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Unfolding of the week

A program meant to

I getting up to speed with the fundamentals of RL (particularly
the first few days),

I learning some of the latest developments in RL (particularly
the last few days), and

I connecting with each other (social activity, practical sessions,
final quizz).

We wanted to keep this RL summer school at a reasonable size to
allow for interactions, please do not hesitate to ask questions (with
moderation for each student ;)
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Some numbers

I About 80 participants from all continents (17 different
countries).

I 12 speakers, 5 teaching assistants.

I 5 days

If you want to connect with each other during the week, you can
join this what’s app group (you are already about 50 to have
joined)
https://chat.whatsapp.com/FnOwY1d7WW8JoyESQMUzrz
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Social activity - Wednesday afternoon

It’s a boat tour with Italian lunch (vegan/vegetarian option should
be available).

Information to get there: You can take tram number 5 to
Rijksmuseum walk underneath and on the other side there is a pick
up place on the left side of the bridge. We are planning to get
onboard at 1:45pm.
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Additional information

There should be (if everything goes fine) free lunch every day and
we’ll try to organise also a (free) pizza dinner on Friday after the
last session.

In order to be as efficient as possible, it is advised that you already
check https://github.com/VinF/practical sessions RL and follow
the instruction in the README such that you have everything
ready for the practical sessions.
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Motivation for generalization and
deep reinforcement learning
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Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
xt → xt+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
xt → xt+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state: ωt 6= xt

Environment
xt → xt+1

ωt+1

Environment
xt → xt+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)
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Motivation

Figure: Example of an ATARI game: Seaquest
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Motivation: Overview
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Challenges of applying RL to real-world problems

In real-world scenarios, it is often not possible to let an agent
interact freely and sufficiently in the actual environment:

1. The agent may not be able to interact with the true
environment but only with an inaccurate simulation of it. This
is known as the reality gap.

2. The agent might have access to only limited data. This can
be due to safety constraints (robotics, medical trials, etc.),
compute constraints or due to limited exogenous data (e.g.,
weather conditions, trading markets).

12



Challenges of applying RL to real-world problems

In order to deal with the reality gap and limited data, different
elements are important:

I One can aim to develop a simulator that is as accurate as
possible.

I One can design the learning algorithm so as to improve
generalization (and/or use specific transfer learning
methods).
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Generalization

In an RL algorithm, generalization refers to either

I the capacity to achieve good performance in an environment
where limited data has been gathered, or

I the capacity to obtain good performance in a related
environment. This latter case can be tackled with specific
transfer learning techniques.
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Overview

To understand generalization in RL from limited data, we will

I recall the concept in supervised learning, and

I introduce the formulation in RL.

We’ll then discuss how an agent can have a good generalization in
RL (disclaimer: we’ll see where deep RL comes in !)
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Generalisation from limited data in
supervised learning

16



Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset DLS of learning samples (x , y)
i.i.d.∼ (X ,Y ) into a

predictive model.

x

y

You only have access
to a limited dataset.
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Bias and overfitting in supervised learning
For one given x ∼ X , the predictive model f (x | DLS) can be
illustrated as follows for unseen data y ∼ (Y | X = x):

Low overfitting High overfitting

Low bias

High bias

Figure: Illustration of bias and overfitting for unseen tuples, where Y is a
2D continuous RV for visualisation purposes.
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Bias and overfitting in supervised learning
There are many choices to optimize the learning algorithm and
there is usually a tradeoff between the bias and the overfitting
terms to reach to best solution.

Low variance
=low overfitting

High variance
=high overfitting

Low bias

High bias

More data
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Bias and overfitting in supervised learning
Assuming a random sampling scheme DLS ∼ DLS , f (x | DLS) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by:

I [f ] = E
X

E
DLS

E
Y |X

L (Y , f (X | DLS)), (1)

where L(·, ·) is the loss function.

If L(y , ŷ) = (y − ŷ)2, the error
naturally gives the bias-variance decomposition:

E
DLS

E
Y |X

(Y − f (X | DLS))2 = σ2(x) + bias2(x), (2)

where

bias2(x) ,
(
EY |x(Y )− EDLS

f (x | DLS)
)2
,

σ2(x) , EY |x
(
Y − EY |x(Y )

)2︸ ︷︷ ︸
Internal variance

+EDLS

(
f (x | DLS)− EDLS

f (x | DLS)
)2

︸ ︷︷ ︸
Parametric variance = overfitting

.
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Bias and overfitting in reinforcement learning

This bias-variance decomposition highlights a tradeoff between

I an error directly introduced by the learning algorithm (the
bias) and

I an error due to the limited amount of data available (the
parametric variance).

Note that there is no such direct bias-variance decomposition for
loss functions other than the L2 loss! It is however always possible
to decompose the prediction error with a term related to the lack
of expressivity of the model (the bias) and a term due to the
limited amount of data (overfitting comes from the variance of
f (x | DLS) on the loss when DLS ∼ DLS but 6= statistical variance
if loss function is not L2).
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Break

Next: generalization in reinforcement learning

23



Generalisation from limited data in
reinforcement learning
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Bias and overfitting in supervised learning

Since there is no direct bias-variance decomposition for loss
functions other than L2 loss in supervised learning, there is not an
actual ”bias-variance” tradeoff in RL.

However, there is still a tradeoff between a sufficiently rich learning
algorithm (to reduce the model bias, which is present even when
the amount of data would be unlimited) and a learning algorithm
not too complex (so as to avoid overfitting to the limited amount
of data).
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Bias and overfitting in RL

The batch or offline algorithm in RL can be seen as mapping a
dataset D ∼ D into a policy πD (independently of whether the
policy comes from a model-based or a model-free approach):

D → πD .

In an MDP, the suboptimality of the expected return can be
decomposed as follows:

E
D∼D

[V π∗(x)− V πD (x)] = (V π∗(x)− V πD∞ (x))︸ ︷︷ ︸
asymptotic bias

+ E
D∼D

[(V πD∞ (x)− V πD (x))︸ ︷︷ ︸
error due to finite size of the dataset Ds

referred to as overfitting

].
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How to obtain the best policy?

Data
Policy
class

% of the
error

due to
overfitting

% of the
error due to
asymptotic

bias

Figure: Schematic representation of the bias-overfitting tradeoff.
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How to improve generalization in
RL?
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How to improve generalization?

We can optimize the bias-overfitting tradeoff thanks to the
following elements:

I an abstract representation that discards non-essential
features,

I the objective function (e.g., reward shaping, tuning the
training discount factor) and

I the learning algorithm (type of function approximator and
model-free vs model-based).

And of course, if possible:

I improve the dataset (exploration/exploitation dilemma in an
online setting)
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1. Abstract representation
The appropriate level of abstraction plays a key role in the
bias-overfitting tradeoff and one of the key advantages of using a
small but rich abstract representation is to allow for improved
generalization.

I When considering many features on which to base the policy,
an RL algorithm may take into consideration spurious
correlations, which leads to overfitting.

I Removing features that discriminate states with a very
different role in the dynamics introduces a bias.

x (6)

x (3)

x (0)

x (7)

x (4)

x (1)

x (8)

x (5)

x (2)

y

x

Environment

(0, 2)

(0, 1)

(0, 0)

(1, 2)

(1, 1)

(1, 0)

(2, 2)

(2, 1)

(2, 0)

States
representation
with a set of

features (x , y)

(0)

(0)

(0)

(1)

(1)

(1)

(2)

(2)

(2)

Feature
selection where

only the x-coordinate
has been kept

Figure: Illustration of the abstract representation.
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2. Modifying the objective function

In order to improve the policy learned by a deep RL algorithm, one
can optimize an objective function that diverts from the actual
objective. By doing so, a bias is usually introduced but this can in
some cases help with generalization. The main approaches to
modify the objective function are either

I to modify the reward of the task to ease learning (reward
shaping), or

I tune the discount factor at training time.
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3. Choice of the learning algorithm and function
approximator selection

In general, an RL agent may include one or more of the following
components:
I a representation of a value function that provides a prediction

of how good is each state or each couple state/action,
I a direct representation of the policy π(x) or π(x , a), or
I a model of the environment in conjunction with a planning

algorithm.

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Deep learning has brought its generalization capabilities to RL.
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3. Choice of the learning algorithm and function
approximator selection

I The function approximator in deep learning characterizes how
the features will be treated into higher levels of abstraction. A
fortiori, it is related to feature selections (e.g., an attention
mechanism), etc.

I Depending on the task, finding a performant function
approximator is easier in either a model-free or a model-based
approach. The choice of relying more on one or the other
approach is thus also a crucial element to improve
generalization.
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3. Choice of the learning algorithm: a parallel with
neurosciences

In cognitive science, there is a dichotomy between two modes of
thoughts (D. Kahneman. (2011). Thinking, Fast and Slow) :

I a ”System 1” that is fast and instinctive and

I a ”System 2” that is slower and more logical.

Figure: System 1 Figure: System 2

In deep reinforcement, a similar dichotomy can be observed when
we consider the model-free and the model-based approaches.
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A few additional challenges in
(deep) RL
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Another important challenge: transfer learning

Figure: Transfer learning between different renderings. Picture from
”Playing for Data: Ground Truth from Computer Games”, Richter, S.
and Vineet, V., et al
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Another important challenge: exploration

I Undirected exploration (e.g. ε-greedy)
I Directed exploration with an estimate of “novelty”

I when rewards are not sparse, a measure of the uncertainty on
the value function can be used,

I if sparse rewards or no rewards, some exploration rewards have
to be used.
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Conclusions
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Conclusion

The different components of the RL agent play a role in
performance.

Policies
Exploration/Exploitation

(e.g., via ε-greedy)

Controllers
• train/validation
and test phases
• hyper-parameters
management

Replay memory

Learning
algorithms

Function
Approximators

ENVIRONMENT

AGENT
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Conclusion

Generalization is a central concept in the field of machine learning,
and reinforcement learning is no exception.

Today, we have seen

I what generalization is in RL,

I how an agent can have a good generalization,

I a few additional challenges in (deep) RL

More information can be found in the following book:

V François-Lavet, et al.”An introduction to deep reinforcement
learning”. Foundations and Trends in ML.
https://arxiv.org/abs/1811.12560
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Questions?


	Kickoff RL week
	Motivation for generalization and deep reinforcement learning
	Generalisation from limited data in supervised learning
	Generalisation from limited data in reinforcement learning
	How to improve generalization in RL?
	A few additional challenges in (deep) RL
	Conclusions

