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So	far,	we've	assumed	that	we	have	no	control	over	the	
environment	we're	learning	in.	All	we	can	do	is	take	an	action,	
and	observe	the	result.	


This	is	not	always	true.	In	many	cases,	we	have	some,	or	even	
perfect	access	to	the	transition	function	and	the	reward.	
Consider,	for	instance	the	case	of	playing	a	game	like	tic-tac-toe	
or	chess	against	a	computer	opponent.	We	don't	have	to	play	a	
single	game	from	start	to	finish,	never	considering	alternatives	
or	trying	different	approaches.	We	can	actually	explore	
different	paths	and	try	different	approaches	to	see	what	the	
consequences	are.	


We	can	use	this	during	training	to	try	and	explore	the	state	
space	more	efficiently.	We	can	also	use	it	during	in	production	
(for	instance	when	we	are	playing	a	human	opponent)	to	make	
our	policy	network	more	powerful:	we	try	different	moves	
observe	what	a	computer	player	would	do,	and	search	a	few	
moves	ahead.	In	general,	this	is	a	good	way	to	improve	the	
judgements	made	by	a	policy	network.


In	general,	we'll	call	such	methods	tree	search.	From	the	
perspective	of	the	agent,	the	space	of	possible	future	scenarios	
has	the	shape	of	a	tree:	all	the	actions	we	can	take,	all	the	states	
that	can	follow	those	actions,	all	the	actions	we	can	take	in	all	of	
those	states	and	so	on.	If	we	have	access	to	the	state	transition	
function,	or	a	good	simulation	of	it,	we	can	use	that	to	explore	
the	state	space	ahead	of	us	a	little	bit	before	comitting	to	an	
action.


|section|Tree	search| 
|video|https://www.youtube.com/embed/R4souHAdRP4|

The	combination	of	deep	reinforcement	learning	and	tree	
search	has	led	to	one	of	the	most	important	breakthroughs	in	
AI	in	recent	years.		In	2016	AlphaGo,	a	Go	playing	computer	
developed	by	the	company	DeepMind	beat	Lee	Sedol,	one	of	the	
best	players	in	the	world.	Many	AI	researchers	were	convinced	
that	this	AI	breakthrough	was	at	least	decades	away.


image	source:	http://gadgets.ndtv.com/science/news/lee-
sedol-scores-surprise-victory-over-googles-alphago-in-
game-4-813248

The game of Go

3

Since	we're	using	Go	as	a	target	for	these	methods,	here	is	some	
intuition	about	how	Go	works.	The	rules	are	very	simple:	
players	(black	and	white)	move,	one	after	the	other,	placing	
stones	on	a	19	by	19	grid.	The	aim	of	the	game	is	to	have	as	
many	stones	on	the	board,	when	no	more	stones	can	be	placed.	
The	only	way	to	remove	stones	is	to	encircle	your	opponent.


The	general	structure	of	this	game	is	the	same	as	tic-tac-toe	or	
chess:	it's:


• two	player,	turn-based


• perfect	information,	both	players	can	see	all	there	is	to	
know	about	the	state	of	the	game	by	looking	at	the	board.


• zero	sum	if	one	player	loses,	the	other	wins	and	vice	versa.	If	
a	state	is	good	for	one	player	it	is	precisely	equally	bad	for	the	



other	player.


The	reason	Go	was	considered	so	difficult	to	solve	compared	to	
chess	was	simply	that	the	game	tree	was	so	broad	and	deep:	at	
any	given	point	a	player	must	choose	between	hundred	of	
possible	moves	and	and	a	game	has	211	turns	on	average.	
Compare	this	to	chess,	which	has	about	20	possible	moves	at	
any	one	point	and	lasts	about	40	moves	on	average.


It's	sometimes	said	that	the	sheer	number	of	possible	positions	in	
Go	is	larger	than	the	number	of	atoms	in	the	universe	and	that	
that	is	what.	makes	it	so	difficult.	This	is	partly	misleading	and	
partly	false.	The	number	of	possible	chess	positions	is	also	vast	
(1046	possible	distinct	positions	and	10120	nodes	in	the	game	tree,	
with	the	number	of	atoms	in	the	universe	somewhere	in	between)	
and	we	managed	to	solve	that	just	fine	without	any	learning	at	
all.


What	makes	Go	so	difficult	is	partly	it	breadth.	The	number	of	
possible	moves	per	turn	is	what	makes	it	impossible	to	search	the	
full	tree	even	two	moves	ahead	moves	ahead.	Moreover,	humans	
seem	to	use	a	kind	of	visual	intuition	to	break	through	this	
complexity	which	is	very	hard	to	capture	in	simple	rules,	which	
suggests	that	learning	may	be	a	worthwhile	approach.
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tic-tac-toe

environment: some fixed opponent(s) 
Iterate from a random player


episodes: games against opponent 
Play by sampling from the output distribution


state: board 
action: placing a cross or circle


policy: neural network 
outputs probabilities over 9 possible actions


value function: neural network 
RL requires only a policy, but it can be helpful to have a 
value network too
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To	finish	up,	let’s	see	what	this	looks	like	in	our	our	tic-tac-toe	
example.	


In	principle	the	only	requirement	for	the	value	network	is	that	
the	better	the	state	is	(according	to	the	network),	the	higher	the	
value,	but	in	practice,	a	good	way	to	define	the	value	is	to	make	
it	an	estimate	of	the	expected	reward	from	the	given	state,	using	
the	current	policy.
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This	is	what	we	would	do	in	a	regular	RL	setting,	where	we	
don't	know	anything	about	the	environment.


In	the	case	of	a	full	information	game,	however,	we	actually	
have	access	to	the	whole	state	graph.	We	already	know	all	the	
rules	of	the	environment.	We	can	use	this	to	our	advantage.
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our move their move our move their move our move their move The	main	concept	we	will	be	building	on	in	this	section	is	the	
game	tree.	This	is	a	tree	with	the	start	state	at	the	root.	Its	
child	nodes	are	the	states	that	can	be	reached	in	one	move	by	
the	player	who	moves	first.	For	each	of	these	children	all	their	
children	are	the	states	that	can	be	reached	by	the	player	who	
moves	second,	and	so	on	until	we	get	to	the	leaf	nodes:	those	
states	where	the	game	has	ended.	


Even	for	a	game	as	simple	as	tic	tac	toe,	the	full	game	tree	is	too	
big	to	show	in	a	slide	like	this.	What	we've	shown	here	is	just	a	
small	part	of	the	full	tree.


The	key	idea	to	tree	search	methods	is	that	by	exploring	this	
tree,	from	the	node	representing	the	current	state	of	the	game,	
we	can	reason	about	which	moves	are	likely	to	lead	to	better	
outcomes.


This	is	similar	to	the	state	space	we	get	when	we	cast	this	as	a	
reinforcement	learning	problem	but	not	quite	the	same.	In	that	
case	we	only	see	states	where	the	opponent	has	moved,	so	only	
half	of	these	nodes	are	states	the	the	RL	agent	would	observe.
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our move

their move

our move

their move

our move

we win draw we win drawthey winthey winthey win

they win

Since	even	the	tic	tac	toe	game	tree	is	too	complex	to	fully	plot,	
we	will	use	this	game	tree	as	a	simple	example.	It	doesn't	
correspond	to	any	particular	realistic	game,	but	you	can	
hopefully	map	the	idea	presented	here	to	the	move	realistic	
game	trees	of	tic	tac	toe,	chess	and	go.



Tree search

• Rollouts


• Minimax


• Monte Carlo Tree Search


How to:


• use them without any learning,


• use them after you've learned a policy and value net,


• use to learn apolicy and value net.
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We'll	look	at	a	few	simple	methods	of	tree	search.	These	by	
themselves	are	not	reinforcement	learning	methods.	They	
aren't	even	learning	methods	in	any	meaningful	way.	All	of	
them	just	explore	the	game	tree	as	much	as	possible,	and	try	to	
come	up	with	a	good	move.	


This	is	how	many	of	the	earliest	game	playing	engines	worked:	
they	just	search	the	game	tree	from	the	current	state,	return	a	
good	move	and	play	it.	The	opponent	plays	their	move,	and	they	
start	the	whole	process	again.


For	each	of	them	we	will	first	see	how	they	work	by	themselves,	
and	then	we	will	see	how	we	can	use	them	to	improve	an	
existing	policy	during	play,	and	how	to	use	it	during	training	to	
improve	a	policy	network.	
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We	start	with	a	simple,	but	powerful	idea:	random	rollouts.


First,	we	label	the	leaf	nodes	with	their	value.	This	is	1	if	we	
win	in	that	node,	0.5	if	there	is	a	draw,	and	0	if	the	opponent	
wins.	


In	the	previous	sections	we	used	-1,	0	and	1	as	rewards,	but	the	
difference	is	arbitrary	for	almost	all	algorithms.	The	current	
values	serve	to	make	the	exposition	clearer	when	we	get	to	the	
MCTS	algorithm.


In	this	picture,	we	have	the	next	move,	so	we	need	to	decide	
between	move	1	and	move	2.	


The	way	random	rollouts	work	is	that	for	every	node	we	reach	
by	making	one	of	the	moves	we're	considering,	we	simply	
simulate	a	series	of	random	games	starting	at	that	node.	This	
means	that	we	just	play	random	moves	for	both	players	until	
we	reach	a	leaf	node.	This	is	called	a	random	rollout.	


We	then	average	all	the	values	we	get	at	the	end	of	each	rollout	
per	starting	node.	In	this	example,	we	get	-2/3	for	move	1,	and	
0	for	move	2.	We	take	this	as	estimates	for	the	values	of	the	two	
nodes	we	reach	by	playing	the	two	moves.


In	this	case,	the	node	following	move	2	gives	us	the	highest	
estimated	value,	so	we	choose	to	play	move	2.


random rollouts

given start state s


for all possible moves a:


let s' be the result of playing a


repeat N times:


simulate a full random game from s'  
play random moves for both opponents


observe outcome: 1 for win, 0 for draw, -1 for loss


play the move a that led to the highest average outcome
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Here	is	the	algorithm	in	pseudocode.


It	may	seem	a	little	mysterious	why	random	rollouts	work	at	all	
against	a	non-random	player,	since	these	random	games	will	be	
so	different.	One	way	to	think	about	it	is	that	we're	evaluating	
different	subtrees.	If	the	subtree	below	node	1	has	many	more	
leaf	nodes	where	we	win,	than	the	subtree	below	node2,	then	it	
can't	be	too	bad	to	move	to	node	1,	since	at	the	very	least	there	
are	many	opportunities	to	win	from	that	node.	


Perhaps	the	opponent	is	too	smart	to	let	us	get	to	any	of	those	
opportunities,	but	for	such	a	simple	method	it	gives	us	a	pretty	
good	opportunity.
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Here	is	an	illustration	for	why	even	such	random	play	can	be	
informative.	Chess	is	a	particularly	illustrative	example,	since	
random	play	is	so	far	removed	from	what	a	good	player	would	
do.	Therefore,	how	could	a	series	of	random	plays	tell	us	
anything	about	what	intelligent	players	would	do	from	a	given	
state?


In	this	chess	position,	black	has	just	made	a	tremendous	
blunder,	by	moving	its	queen	in	the	path	of	the	white	knight.	
White	can	take	the	queen	with	no	repercussions.	Can	random	
rollouts	identify	that	taking	the	queen	is	a	good	move?


If	white	doesn't	take	the	queen,	and	moves,	say,	one	of	its	
pawns	instead,	all	the	rollouts	from	that	point	are	games	with	
equal	material,	and	they	will	likely		all	end	in	a	draw.	If	white	
takes	the	queen,	all	random	rollouts	are	played	with	a	massive	
material	advantage	for	white,	and	even	though	most	of	them	
will	still	end	in	a	draw,	the	probability	that	we	will	see	a	
checkmate	increases.	With	enough	random	rollouts,	we	should	
be	able	to	tell	the	difference.


Of	course,	the	difference	is	still	minimal,	and	for	such	an	
obviously	good	move,	we'd	like	to	draw	our	conclusions	a	little	
quicker.

policies and value functions

policy function: p(a|s) 


Used to simulate an agent or assign probabilities of 
winning to a state.


value function: V(s)


Used as a heuristic to value particular states during search 
or to estimate the expected outcome.
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To	improve	rollouts,	and	tree	search	methods,	we	can	introduce	
policies	and	value	functions.


For	now,	we	won't	assume	that	these	are	neural	nets,	so	we	
don't	need	to	worry	about	training	them.	You	can	imagine	using	
a	simple	handwritten	policy	and	value	function	that	isn't	great,	
but	is	probably	better	than	picking	random	moves.


For	instance,	we	could	define	a	policy	function	that	plays	
entirely	randomly,	except	that	it	assigns	a	little	more	
probability	to	moves	that	capture	a	piece.	Likewise	with	the	
value	function:	we	could	write	simple	value	function	that	
assigns	-1,	0	and	1	to	lost,	drawn	and	won	states	respectively,	
but	assigns	values	in	[-1,	0]	for	states	where	the	opponent	has	a	
material	advantage,	and	states	in	[0,	1]	for	states	where	we	
have	a	material	advantage.


Another	difference	is	that	policies	in	reinforcement	learning	were	
only	defined	from	the	perspective	of	one	player.	There	are	simple	
fixes	for	this.	If	we	have	a	policy	for	white	in	chess,	we	can,	for	
instance	simply	invert	the	board	(making	white	pieces	black	and	
vice	versa)	to	get	a	policy	for	black.	The	precise	details	depend	on	
what	the	implementation	looks	like,	but	the	zero	sum	nature	of	
these	games	means	that	a	good	policy	for	one	player	is	always	
automatically	also	a	good	policy	for	another	player.	The	move	
player	1	likes	a	move,	the	less	player	2	likes	it.



random rollouts

given start state s


for all possible moves a:


let s' be the result of playing a


repeat N times:


simulate a full random game from s'  
play random moves for both opponents


observe outcome: 1 for win, 0 for draw, -1 for loss


play the move a that led to the highest average outcome
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<- policy fun
ction

<- value function

If	we	now	look	at	the	random	rollout	algorithm	again,	we	see	
that	we	are	implicitly	already	using	a	very	simple	policy	and	a	
very	simple	value	function.	The	policy	function	we	are	using	is	
simply	a	fully	random	one.	And	the	value	function	is	one	that	
only	assigns	non-zero	values	to	leaf	nodes.


We	can	now	improve	the	algorithm	by	replacing	these	with	a	
better	policy	function	and	a	better	value	function	to	improve	
the	rollouts.

rollouts with a policy and a value function

with a policy function:


Instead of playing random moves, sample moves from the 
policy.


with a value function:


Limit the rollout depth, and label nodes with the value 
from the value function.
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We	replace	the	random	moves	with	moves	sampled	from	the	
policy.	As	noted	before,	it's	usually	a	simple	matter	to	turn	a	
policy	for	player	1	into	a	similar	policy	for	player	2.


If	we	have	a	value	function,	what	we	can	do	is	limit	the	depth	of	
the	rollout	(either	to	a	fixed	value	or	a	random	one).	This	allows	
for	faster	rollouts,	meaning	that	we	can	do	more	rollouts	in	the	
same	time,	but	it	also	allows	us	to	recognize	that	we	have	an	
advantage	without	going	through	all	the	highly	particular	steps	
of	the	endgame.	In	particular	in	a	game	like	chess,	it's	unlikely	
that	a	mostly	random	policy	will	find	a	checkmate,	but	if	we	
have	a	strong	material	advantage,	the	value	function	can	let	us	
know	that	much	earlier.
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policy chooses the moves

value function labels the nodes

rollouts during play

Train the networks normally 
Using policy gradients, Q-learning, random search, etc.


Use them in the rollout algorithm to improve the policy 
The rollout algorithm should pick a better move than the policy network by itself
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Ok,	so	let's	imagine	we've	managed	to	train	up	a	policy	network	
and	a	value	network	somehow.	How	do	we	use	the	idea	of	
rollouts?


The	first	idea	is	to	use	it	during	play.	That	is,	when	we're	
training,	we	don't	use	tree	search	at	all,	but	when	the	time	
comes	to	face	off	against	a	human	player,	we	take	our	policy	
network	and	we	take	our	value	network	and	we	put	them	into	
the	rollout	algorithm.	Then	we	play	the	moves	that	the	
rollout	algorithm	returns.


The	idea	here	is	that	we	could	simply	play	whatever	the	policy	
network	suggests	directly,	but	with	the	right	hyperparameters,	
the	rollout	algorithm	should	usually	do	better	than	the	plain	
policy	algorithm	it	uses	internally.	We	use	the	rollout	
algorithm	to	improve	the	policy.




This	is	more	or	less	how	the	first	AlphaGo	worked.	It	used	a	
different	tree	search	algorithm	(which	we'll	discuss	later),	but	the	
basic	idea	was	the	same:	during	training	use	policy	gradients	and	
simple	reinforcement	learning	to	train	a	policy	network	and	a	
value	network,	and	then	during	play,	use	those	inside	a	tree-
search	network.

rollouts during training

Given a policy p.


Generate a realistic game state s. 
For instance by letting p play a game against some opponent (maybe itself ).


Do rollouts from s to estimate values for all actions.


• Train the value network to mimic these values 
Instead of the ones it now predicts (L2 loss).


• Train the policy to predict what rollout will chose 
to do 
Log loss: minimize -log p(a) for the chosen action a.
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rollouts during training

Tree search functions as a policy improvement operator.


init policy p0 randomly


loop t = 0, 1, 2, ...:


train pt+1 to mimic rollout(pt)


We're looking for the fixed point of the improvement 
operation.

19

In	contrast	to	this	approach	we	can	also	use	the	tree	search	
during	training.	The	key	insight	here	was	already	stated	in	the	
last	slide	rollouts	are	a	way	to	improve	your	policy.	In	fancy	
terms:	they	are	a	policy	improvement	operator.	


That	is,	if	we	trust	that	the	move	chosen	by	rollouts	with	our	
policy	is	always	better	than	the	move	chosen	by	our	policy	
alone,	then	we	can	use	the	move	chosen	by	the	rollout	
algorithm	as	a	training	target,	for	the	next	iteration	of	our	
algorithm.


That	is,	starting	with	policy	p0,	we	train	the	next	policy	p1	to	
mimic	what	the	rollout	algorithm	does	when	augmented	with	
p1.	When	this	learning	has	converged	(or	simply	afetr	a	few	
steps),	we	discard	p0,	and	train	a	new	policy	p2	to	mimic	what	
the	rollout	algorithm	does	when	augmented	with	p1,	and	so	on.


For	the	value	network	we	can	do	the	same	thing.	The	average	
value	over	all	the	rollouts	should	be	a	better	value	function	than	
the	value	function	we	start	with,	so	we	can	train	the	next	value	
network	to	mimic	the	average	values	returned	by	the	rollouts	
using	the	old	value	network.


One	benefit	of	this	approach	is	that	it	stops	working	when	we	
have	found	a	fixed	point	of	the	policy	improvement	operator.	If	
the	rollout	algorithm	returns	the	same	move	probabilities	and	
values	as	the	policy	and	value	networks	we	started	out	with,	
the	policy	improvement	operator	has	become	useless,	and	the	
policy	by	itself	contains	everything	we	need.	This	means	that	(if	
we	can	be	sure	we've	reached	a	fixed	point),	we	can	actually	
discard	the	tree	search	during	play,	and	play	only	with	the	
policy	network,	which	is	a	lot	faster.


The	idea	of	using	tree	search	as	a	policy	improvement	operator	
during	training	was	introduced	in	AlphaZero.
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The	next	tree	search	algorithm	we'll	look	at	is	called	minimax.	
The	basic	idea	here	is	that	if	we	had	sufficient	compute	to	
search	the	whole	tree,	we	should	be	able	to	play	perfectly:	if	it's	
possible	to	guarantee	a	win,	we	should	win.	


Assuming	that	we	can	search	the	whole	tree,	how	should	we	
choose	our	move?	The	idea	of	minimax	is	that	the	player	whose	
turn	it	is	labels	each	node	with	the	best	score	they	can	
guarantee	from	that	node.	For	us,	this	is	the	maximum	score,	
and	for	the	opponent,	this	is	the	minimum	score.	


This	is	why	the	algorithm	is	called	minimax:	we	are	maximizing	
the	score,	and	the	opponent	is	minimizing	the	score.


For	the	nodes	at	the	top	we	have	no	idea	what	we	can	
guarantee,	but	for	the	nodes	one	step	away	from	the	leaves,	it's	
easy	to	see.	In	most	of	these	nodes,	it's	the	opponent's	turn,	so	
we	know	that	if	we	hit	these	nodes,	there	is	only	one	move	left,	
and	the	opponent	chooses	that.	In	short,	whatever	the	lowest	
outcome	is	among	the	children,	we	know	that	the	opponent	can	
guarantee	that.


For	instance,	in	the	highlighted	node,	there	are	two	children,	
with	outcomes	0	and	0.5.	The	opponent	prefers	the	minimum,	
so	we	know	that	from	this	node,	the	opponent	can	guarantee	an	
outcome	of	0,	and	there's	nothing	we	can	do	about	it.	Unless	the	
opponent	plays	sub-optimally,	we	know	the	value	of	this	node	is	
0.	


With	this	logic,	we	can	label	all	nodes	that	are	one	opponent	
move	away	from	the	leaf	node.	No	matter	what	we	do,	if	the	
opponent	plays	their	best,	this	is	the	outcome.	Note	that	some	
of	these	nodes	still	have	a	value	of	1.	If	we	maneuver	the	
opponent	into	this	state,	we've	already	won.	Even	though	they	
still	have	a	move	left,	there's	nothing	they	can	do	to	avoid	us	
winning.


Now	that	we	know	the	value	of	these	nodes	for	a	fact,	we	can	
move	up	the	tree.	This	time	it's	our	turn.	For	every	parent	of	a	
set	of	nodes	whose	value	we	know,	we	simply	label	it	with	the	
maximum	of	all	the	values	of	the	children.	Again,	in	some	cases,	
we	cannot	avoid	a	loss,	despite	the	fact	that	we're	in	control.


Note	that	we're	always	taking	the	maximum	or	the	minimum.	
Unlike	in	rollouts,	where	we	were	averaging	over	all	nodes	
visited,	here	only	one	leaf	node	ultimately	decided	the	value	of	the	
internal	nodes.


Moving	up	the	tree	like	this,	we	see	that	despite	the	fact	that	
there	are	many	branches	where	we	can	force	a	win,	if	the	
opponent	plays	optimally,	the	can	guarantee	that	we	never	visit	
those	branches.	Unless	we	get	lucky	and	they	make	a	mistake,	
the	best	we	can	do	is	to	force	a	draw.

minimax (full search)

function minimax(s):


if s is a leaf node:


return value(s)


values = []


for a in moves(s):


let s' be the result of playing a in s


add minimax(s') to values


return max(values) if my_turn(s) else min(values)
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Here	is	a	recursive,	depth-first	implementation	of	minimax.	


Usually	breadth-first	is	a	more	flexible	way	to	implement	
minimax,	but	this	leads	to	the	simplest	pseudocode.	In	practice	
you	can	also	work	out	that	certain	parts	of	the	tree	don't	need	
exploring	(because	some	player	can	already	guarantee	a	better	
score	somewhere	else	that	that	part	of	the	tree	can	offer).	This	is	
called	alpha-beta	pruning.	



using a policy and value function

with a value function:


Set maximum depth. Minimax the values from the value 
function.


with a policy function:


Ignore low-probability nodes (beam search), sample next 
node to expand based on policy.
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In	practice,	tic-tac-toe	is	about	the	only	game	for	which	you	can	
realistically	search	the	whole	game	tree.	In	practice,	we	limit	
our	search	to	a	subtree.


The	traditional	way	to	do	this	is	with	a	value	function.	We	
search	the	whole	tree	but	only	up	to	a	maximum	depth.	At	this	
depth,	we	use	the	value	function	to	label	the	nodes,	and	then	
work	these	back	up	the	tree.


This	simple	algorithm	formed	the	basis	for	Deep	Blue,	the	first	
chess	computer	to	beat	a	grandmaster.	IBM	simply	spent	a	lot	of	
time	developing	a	very	strong,	hand	tuned	value	function,	and	
then	built	custom	hardware	to	implement	the	minimax	algorithm	
very	efficiently.


It's	less	popular	in	combination	with	minimax,	but	we	could	
also	include	a	policy	function	here.	This	could,	for	instance	
allow	us	to	prioritize	certain	nodes	over	others,	searching	them	
first.	In	real	chess	matches,	time	is	a	factor,	so	chess	computers	
need	to	search	as	much	of	the	tree	as	they	can,	within	a	
particular	time	limit.	A	policy	function	can	help	us	determine	
which	moves	are	more	likely	to	yield	good	results,	so	we	can	
search	different	parts	of	the	tree	to	different	depths.

minimax with learned policies and values

minimax during play:


Use the policy and value networks to search a subtree of 
the gametree.


minimax during training:


Use minimax as a policy/value improvement operator.
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If	we	have	learned	policies	and	value	functions,	we	can	use	the	
same	approaches	we	used	before.	We	can	train	the	policy	and	
value	network	using	basic	reinforcement	learning,	and	then	
during	play,	given	them	a	little	boost	by	using	them	to	search	
the	game	tree	with	minimax.


But,	we	can	also	use	minimax	as	a	policy	improvement	
operator.	If	we	can	trust	that	the	moves	chosen,	and	the	values	
assigned	by	minimax	are	really	better	than	those	of	the	plain	
networks	by	themselves,	we	can	simply	set	them	as	targets	for	
a	new	iteration	of	the	policy	and	value	network.


MCTS
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As	you	may	have	concluded	yourself	already,	minimax	and	
rollouts	are	at	something	of	a	spectrum.	Minimax	searches	the	
whole	tree.	Using	a	value	function	and	a	policy,	we	can	limit	this	
search	to	a	subtree.	Rollouts	is	the	most	extreme	case	of	
searching	just	a	subtree:	we	search	only	a	single	path,	but,	we	
do	it	multiple	times	and	average	the	results.	We	can,	of	course,	
come	up	with	a	variety	of	algorithms	that	are	somewhere	in	
between:	always	searching	subtrees	probabilistically,	and	
repeating	the	search	to	reduce	variance.


One	of	the	more	elegant	algorithms	to	combine	the	best	of	both	
worlds	is	Monte	Carlo	Tree	Search	(MCTS).	This	is	the	basic	
algorithm	that	was	used	to	beat	Lee	Sedol	at	Go.



our move

their move

our move

their move

our move

1 0.5 1 0.5000

0
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0/0

0/0 -> 0/1

-> 0/1

0

Here's	how	MCTS	works.	


We	will	build	a	subtree	of	the	game	tree	in	memory	step	by	
step.	At	first	this	will	be	just	the	root	node,	which	we	will	
extend	with	one	child	at	a	time.	Each	node,	we	will	label	with	a	
probability:	the	times	we've	won	from	that	node,	over	the	total	
times	we've	visited	that	node.	At	the	start	this	value	is	0/0	for	
the	root	node,	and	there	are	no	other	nodes	in	the	tree.


We	then	iterate	the	following	four	steps


• Selection:	select	an	unexpanded	node.	At	first,	this	will	be	
the	root	node.	But	once	the	tree	is	further	expanded	we	
perform	a	random	walk	from	the	root	down	to	one	of	the	
leaves.


• Expansion:	Once	we	hit	a	leaf,	we	add	one	of	its	children	to	
the	tree,	and	label	it	with	the	value	0/0


• Simulation:	From	the	expanded	child	we	do	a	rollout.


• Backup:	If	we	win	the	rollout	let	v	=	1	otherwise	v	=	0.	For	
the	new	child	and	every	one	of	its	parents	update	the	value.	If	
the	old	value	was	a/b,	the	new	value	is	a+v	/	b+1.	The	value	
is	the	proportion	of	simulated	games	crossing	that	state	that	
we’ve	won.


Backup	is	sometimes.	called	backpropagation,	which	is	not	to	be	
confused	with	the	backpropagation	used	in	neural	networks.


our move

their move

our move

their move

our move

1 0.5 1 0.5000

0
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0/1

0/1

0/0-> 0.5/1

-> 0.5/2

-> 0.5/2

0.5

In	the	next	step	we	expand	another	node.	This	could	be	any	
child	of	a	node	already	expanded.	Currently,	we	have	three	
options,	the	two	children	of	the	node	we	just	added,	of	the	
second	child	of	the	root	node.


We	could	choose	a	node	uniformly	at	random,	or	according	to	the	
values	of	the	nodes	we	have	so	far	established.	This	is	an	
exploration/exploitation	tradeoff,	and	a	large	part	of	using	MCTS	
effectively	boils	down	to	making	this	tradeoff	carefully.	The	most	
common	techniques	are	too	technical	for	this	course,	but	the	
wikipedia	article	on	MCTS	provides	some	pointers.


We	proceed	as	before:	we	do	a	random	rollout	from	the	new	
node,	observe	whether	we've	won	the	rollout	and	update	the	
values	of	all	ancestors	of	the	current	node:	we	always	
increment	the	number	of	times	visited	by	one,	and	the	number	
of	wins	only	if	we	won	the	rollout.	If	we	drew	(as	in	this	case),	
we	increment	by	0.5.



our move

their move

our move

their move

our move

1 0.5 1 0.5000

0
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0.5/1

0.5/2

0.5/2

1

0/0 -> 1/1

-> 1.5/2 In	the	next	iteration,	we	again	add	a	node.	Note	that	we	again	
have	three	options	for	nodes	to	add.	We	pick	the	second	child	of	
the	root	node.	


We	do	another	rollout	and	this	time	we	win.	


Note	how	the	values	are	backed	up:	only	the	newly	expanded	
node	and	the	root	note	change	their	values,	but	not	the	other	
two	nodes	in	the	tree.


You	can	think	of	the	values	on	each	node	as	an	estimate	of	the	
probability	of	winning	when	starting	at	that	node.	The	other	
two	nodes	were	not	part	of	this	path,	so	their	estimates	aren't	
affected	by	the	trial.

monte carlo tree search

starting with a single node with value 0/0


loop:


select a node n to add to the graph


rollout from n


update n and all ancestors 
Increment the denominator by 1 and the numerator with the result of the rollout.
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After	iterating	for	a	while	(usually	determined	by	the	game	
clock),	we	have	both	a	value	for	the	root	node,	and	an	idea	of	
what	the	best	move	is	(the	one	that	leads	to	the	child	node	with	
the	highest	value).

MCTS with policies and values
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with a policy function:


Instead of playing random moves, sample moves from the 
policy.


with a value function:


Limit the rollout depth, and label nodes with the value 
from the value function (these need to be win 
probabilities)

same as the ro
llout algor

ithm

The	way	we	insert	a	policy	function	and	a	value	function	into	
MCTS	is	the	same	as	it	was	for	the	plain	rollout	algorithm.	We	
replace	the	random	rollout	with	a	policy	rollout	and	we	use	the	
value	function	by	limiting	the	rollout	depth	and	backing	up	the	
values	provided	by	the	value	function.	This	works	best	if	the	
values	can	be	interpreted	as	win	probabilities	(i.e.	they're	
between	0	and	1).

minimax with learned policies and values

MCTS during play:


Use the policy and value networks to search a subtree of 
the gametree.


MCTS during training:


Use MCTS as a policy/value improvement operator.
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Again,	we	can	use	MCTS	during	play	to	boost	the	strength	of	the	
learned	policy	and	value	networks.	This	is	what	the	original	
AlphaGo	did	when	it	beat	Lee	Sedol	in	2016.


But,	as	before,	we	can	also	view	MCTS	as	a	way	of	improving	a	
given	policy	and	value	function.	The	strategy	is	exactly	the	same	
as	before,	each	new	iteration	is	trained	to	mimic	the	behavior	of	
the	MCTS	used	with	the	previous	iteration.




AlphaGo (2016)

Start with imitation learning 
Learn to copy human players


Train by playing against previous iterations and self 
update weights by policy gradients


Boost network performance by MCTS
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These	were	the	basic	ingredients	of	the	first	AlphaGo.	It	used	
two	policy	networks,	a	fast	one	and	a	slow	one,	and	a	value	
network.	These	were	first	trained	by	imitation	learning	from	a	
large	database	of	Go	games,	and	then	by	self	play,	using	
reinforcement	learning.


After	training,	during	gameplay,	the	performance	was	boosted	
by	using	the	policy	and	value	networks	in	a	complicated	MCTS	
algorithm.	

AlphaGo Zero (2017)

Learns from scratch, no imitation learning, reward shaping 
etc. 
Also applicable to Chess, Shogi…


Uses three tricks to simplify/improve AlphaGo


1. Combine policy and value nets


2. View MCTS as a policy improvement operator


3. Add residual connections, batch normalization
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AlphaGo Zero (2017)

trick 1: Combine policy and value nets.


trick 2: Use MCTS during training  as a policy improvement 
operator.


trick 3: Use residual connections and batch normalization.
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In	2017,	DeepMind	introduced	an	updated	version:	AlphaZero.	
The	key	achievement	of	this	system	is	that	it	eliminated	
imitation	learning	entirely.	It	could	learn	to	play	go	entirely	
from	scratch	by	playing	against	itself.	DeepMind	also	showed	
that	the	same	tricks	could	be	used	to	learn	Chess	and	Shogi	(a	
Japanese	game	that	is	similar	to	chess).


Deepmind	indicated	in	their	paper	that	these	were	the	main	
improvements	they	introduced	in	AlphaGo.


The	first	two,	we	have	already	discussed.


Residual	connections	and	batch	normalization	are	two	basic	
tricks	for	training	deeper	neural	networks	more	quickly.	It	is	
likely	that	they	simply	weren't	available	or	well	enough	
understood	at	the	time	of	the	first	Alphago.	These	are	not	
specific	to	reinforcement	learning,	and	can	be	used	in	any	

two-headed beast
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0 0 0

0 -1 1

0 0 -1

0.8 0 0

0.1 0 0

0 0.1 0

0.6value

state:

p(action)



learning the policy and value functions
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AlphaGo (2016) AlphaZero (2017)

Of	course,	these	policy	and	values	functions	don't	need	to	be	
hand-written.	They	can	also	be	learned.	And	this	is	where	we	
start	to	connect	reinforcement	learning	to	tree	search.


These	are	rough	illustrations	of	the	network	structures	that	
DeepMind	used	for	their	first	AlphaGo	instance.	Both	treated	
the	Go	board	as	a	grid,	passing	it	through	a	series	of	
convolutional	layers.	The	policy	network	then	outputs	the	same	
grid,	softmaxing	it	to	provide	a	probability	distribution	over	all	
the	positions	where	the	player	can	place	a	stone.	The	value	
network	uses	an	aggregation	function	to	reduce	the	output	to	a	
single	numerical	value.


Using	the	methods	we've	already	discussed,	like	policy	
gradients,	q-learning,	and	imitation	learning,	these	networks	
can	then	be	trained	to	provide	a	decent,	fast	player	(the	policy	
network)	and	a	good	indication	of	the	value	of	a	particular	
state.


In	Q	learning	we	trained	a	policy	network	and	a	value	network	in	
one.	We	didn't	discuss	how	to	train	a	value	network	through	
policy	gradients.	The	idea	used	by	DeepMind	in	the	first	AlphaGo	
was	that	the	value	network	V	predicts	for	state	s	the	value	of	the	
game	played	from	s	by	the	policy	against	itself.	That	is,	we	simply	
observe	a	game	of	the	policy	network	playing	against	itself	and	
afterwards	we	assign	the	result	as	the	target	that	V	should	
predict	for	s.


In	this	sense,	the	two	networks	are	linked.	The	value	network	
predicts	the	value	for	the	current	policy.	It's	unclear	from	the	
paper	whether	in	this	version	of	AlphaGo	the	policy	network	also	
uses	the	value	network	in	training,	or	only	plays	full	games.	


In	a	later	version,	called	AlphaZero,	the	researcher	hit	on	the	
bright	idea	of	making	the	lower	layers	of	the	two	networks	
shared.	The	idea	here	is	that	the	lower	layers	to	neural	
networks	tend	to	extract	generic	features	that	are	largely	task-
independent.	By	using	the	same	layers	for	both	tasks,	these	
parts	of	the	network	get	a	stronger	training	signal.
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After	21	days	of	self-play	(on	a	large	computing	cluster),	
AlphaZero	surpassed	the	performance	of	the	version	that	beat	
Lee	Sedol.



Alpha Zero (2017)

37

MCTS on non-games

(Path) planning, theorem proving, query answering, etc.


Game tree search -> graph search


Rollouts -> random walks


Minimax -> Breadth/depth first search


MCTS -> MCTS / Beam search
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https://www.youtube.com/watch?v=j0z4FweCy4M


what if we don't know the rules?
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> 0, also the immediate reward r u≈t

k
t k+ , where u. is the true, observed 

reward, π is the policy used to select real actions and γ is the discount 
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation 
function, a dynamics function and a prediction function. The dynamics 
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at 
each hypothetical step k, an immediate reward rk and an internal state 
sk. It mirrors the structure of an MDP model that computes the expected 
reward and state transition for a given state and action21. However, 
unlike traditional approaches to model-based RL11, this internal state 
sk has no semantics of environment state attached to it—it is simply the 
hidden state of the overall model and its sole purpose is to accurately 
predict relevant, future quantities: policies, values and rewards. In this 
paper, the dynamics function is represented deterministically; the 
extension to stochastic transitions is left for future work. A prediction 
function fθ computes the policy and value functions from the internal 
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by 
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special 
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future 
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a 
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the 
dynamics function. Specifically, we use an MCTS algorithm similar to 
AlphaZero’s search, generalized to allow for single-agent domains and 
intermediate rewards (Methods). The MCTS algorithm may be viewed 
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node, 
it makes use of the policy, value function and reward estimate produced 

by the current model parameters θ, and combines these values together 
using lookahead search to produce an improved policy πt and improved 
value function νt at the root of the search tree. The next action at+1 ≈ πt 
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match 
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual 
time steps have elapsed. Similarly to AlphaZero, the first objective is 
to minimize the error between the actions predicted by the policy  
pt

k  and by the search policy πt+k. Also like AlphaZero, value targets  
are generated by playing out the game or MDP using the search  
policy. However, unlike AlphaZero, we allow for long episodes with 
discounting and intermediate rewards by computing an n-step return 
zt that bootstraps n steps into the future from the search value,  
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in 
board games are treated as rewards ut ∈ {−1, 0, +1} occurring at the 
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target, 
zt+k. The third objective is to minimize the error between the predicted 
immediate reward r t

k and the observed immediate reward ut+k. Finally, 
an L2 regularization term is also added, scaled by a constant c, leading 
to the overall loss
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where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing 
how the MuZero algorithm plans, acts and learns. We note that for 
chess, Go and shogi, the same squared error loss as AlphaZero is used 
for rewards and values. A cross-entropy loss was found to be more 
stable than a squared error when encountering rewards and values 
of variable scale in Atari. Cross-entropy was used for the policy loss 
in both cases.
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Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and 
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y 
axis shows Elo rating, established by playing games against AlphaZero using 
800 simulations per move for both players. MuZero’s Elo is indicated by the 
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For 
Atari, mean (full line) and median (dashed line) human normalized scores 

across all 57 games are shown on the y axis. The scores for R2D219 (the previous 
state of the art in this domain, based on model-free RL) are indicated by the 
horizontal orange lines. Performance in Atari was evaluated using 50 
simulations every fourth time step, and then repeating the chosen action four 
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of 
training in Atari.



just learn a "dynamics function"

state1, reward <- g(state0, action)

41

NB:	You	need	a	simple	representation	for	the	action	space.

for example: MuZero

42
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reward. Intuitively, the agent can invent, internally, any dynamics that 
lead to accurate planning.

Previous work
RL can be subdivided into two principal categories: model based and 
model free11. Model-based RL constructs, as an intermediate step, a 
model of the environment. Classically, this model is represented by 
a Markov decision process (MDP)21 consisting of two components: a 
state transition model, predicting the next state given the selected 
action, and a reward model, predicting the expected reward during that 
transition. Once a model has been constructed, it is straightforward 
to apply MDP planning algorithms, such as value iteration21 or Monte 
Carlo tree search (MCTS)22, to compute the optimal value function or 
optimal policy for the MDP. In large or partially observed environments, 
the algorithm must first construct the state representation that the 
model should predict. This tripartite separation between representa-
tion learning, model learning and planning is potentially problematic, 
as the agent is not able to optimize its representation or model for the 
purpose of effective planning, so, for example, modelling errors may 
compound during planning.

A common approach to model-based RL focuses on directly mod-
elling the observation stream at the pixel level. It has been hypoth-
esized that deep, stochastic models may mitigate the problems of 
compounding error15,16. However, planning at pixel-level granularity 
is not computationally tractable in large-scale problems. Other meth-
ods build a latent state-space model that is sufficient to reconstruct 
the observation stream at the pixel level23,24 or to predict its future 
latent states25,26, which facilitates more efficient planning but still 
focuses the majority of the model capacity on potentially irrelevant 
detail. None of these previous methods have constructed a model 
that facilitates effective planning in visually complex domains such 
as Atari; results lag behind well tuned, model-free methods, even in 
terms of data efficiency27.

A quite different approach to model-based RL has recently been 
developed, focused end to end on predicting the value function28–33. 
The main idea of these methods is to construct an abstract MDP model 

such that planning in the abstract MDP is equivalent to planning in the 
real environment. This is achieved by ensuring value equivalence, that 
is, that, starting from the same real state, the cumulative reward of a 
trajectory through the abstract MDP matches the cumulative reward 
of a trajectory in the real environment.

The predictron29 introduced value equivalent models for predicting 
value functions (without actions). Although the underlying model still 
takes the form of an MDP, there is no requirement for its transition 
model to match real states in the environment. Instead the MDP model 
is viewed as a hidden layer of a deep neural network. The unrolled MDP 
is trained such that the expected cumulative sum of rewards matches 
the expected value with respect to the real environment, for example, 
by temporal-difference learning.

Value equivalent models have also been applied to optimizing 
value (with actions). Value-aware model learning30,31 constructs an 
MDP model, such that a step of value iteration using the model pro-
duces the same outcome as the real environment. TreeQN32 learns 
an abstract MDP model, such that a tree search over that model 
(represented by a tree-structured neural network) approximates 
the optimal value function. Value iteration networks28 learn a local 
MDP model, such that many steps of value iteration over that model 
(represented by a convolutional neural network) approximates the 
optimal value function.

Value prediction networks33 are perhaps the closest precursor to 
MuZero: they learn an MDP model grounded in real actions; the unrolled 
MDP is trained such that the cumulative sum of rewards, conditioned 
on the actual sequence of actions generated by a simple lookahead 
search, matches the real environment. Unlike MuZero there is no policy 
prediction, and the search utilizes only value prediction.

MuZero algorithm
We now describe the MuZero algorithm in more detail. Predictions are 
made at each time step t, for each of k = 0, …, K steps, by a model µθ, 
with parameters θ, conditioned on past observations o1, ..., ot and for 
k > 0 on future actions at+1, ..., at+k. The model predicts three future 
quantities: the policy p π a o o a a≈ ( | , …, , , …, )t

k
t k t t t k+ +1 1 +1 + , the value 

p0,v0 p1,v1 p2,v2

f f f

f

p2,v2

p3,v3

p1,v1

p0,v0

f

f

f

a b

cs1

s2

s3

r2

r3

r1

a2

a3

a1

h

g gr1 r2

vt+1 vt+2vt
at+1 at+2 at+3

at+1 at+2 at+3

ut+1 ut+2 ut+3

St St+1 St+2

s0

g

g

g

h

s0 s2s1

Fig. 1 | Planning, acting and training with a learned model. a, How MuZero 
uses its model to plan. The model consists of three connected components for 
representation, dynamics and prediction. Given a previous hidden state sk−1 and 
a candidate action ak, the dynamics function g produces an immediate reward 
rk and a new hidden state sk. The policy pk and value function vk are computed 
from the hidden state sk by a prediction function f. The initial hidden state s0 is 
obtained by passing the past observations (for example, the Go board or  
Atari screen) into a representation function h. b, How MuZero acts in the 
environment. An MCTS is performed at each timestep t, as described in a. An 
action at+1 is sampled from the search policy πt, which is proportional to the visit 
count for each action from the root node. The environment receives the action 
and generates a new observation ot+1 and reward ut+1. At the end of the episode, 

the trajectory data are stored into a replay buffer. c, How MuZero trains its 
model. A trajectory is sampled from the replay buffer. For the initial step, the 
representation function h receives as input the past observations o1, ..., ot from 
the selected trajectory. The model is subsequently unrolled recurrently for K 
steps. At each step k, the dynamics function g receives as input the hidden state 
sk−1 from the previous step and the real action at+k. The parameters of the 
representation, dynamics and prediction functions are jointly trained, end to 
end, by backpropagation through time, to predict three quantities: the policy 
pk ≈ πt+k, value function vk ≈ zt+k and reward rk ≈ ut+k, where zt+k is a sample return: 
either the final reward (board games) or n-step return (Atari). Schematic Go 
boards at the top of the figure represent the sequence of observations.

a)	MCTS	with	a	trained	network.


b)	MCTS	collecting	a	replay	buffer	b	acting	in	the	environment	
with	MCTS


c)	
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function Ev u γu o o a a≈ [ + + …| , …, , , …, ]t
k

t k t k t t t k+ +1 + +2 1 +1 +  and, for k 
> 0, also the immediate reward r u≈t

k
t k+ , where u. is the true, observed 

reward, π is the policy used to select real actions and γ is the discount 
function of the environment.

Internally, at each time step t (subscripts t are suppressed for simplic-
ity), the model is represented by the combination of a representation 
function, a dynamics function and a prediction function. The dynamics 
function gθ, is a recurrent process, rk, sk = gθ(sk−1, ak), that computes, at 
each hypothetical step k, an immediate reward rk and an internal state 
sk. It mirrors the structure of an MDP model that computes the expected 
reward and state transition for a given state and action21. However, 
unlike traditional approaches to model-based RL11, this internal state 
sk has no semantics of environment state attached to it—it is simply the 
hidden state of the overall model and its sole purpose is to accurately 
predict relevant, future quantities: policies, values and rewards. In this 
paper, the dynamics function is represented deterministically; the 
extension to stochastic transitions is left for future work. A prediction 
function fθ computes the policy and value functions from the internal 
state sk, pk, vk = fθ(sk), akin to the joint policy and value network of Alp-
haZero. A representation function hθ initializes the ‘root’ state s0 by 
encoding past observations, s0 = hθ(o1, ..., ot); again, this has no special 
semantics beyond its support for future predictions.

Given such a model, it is possible to search over hypothetical future 
trajectories a1, ..., ak given past observations o1, ..., ot. For example, a 
naive search could simply select the k-step action sequence that max-
imizes the value function. More generally, we may apply any MDP plan-
ning algorithm to the internal rewards and state space induced by the 
dynamics function. Specifically, we use an MCTS algorithm similar to 
AlphaZero’s search, generalized to allow for single-agent domains and 
intermediate rewards (Methods). The MCTS algorithm may be viewed 
as a search policy πt = P[at+1|o1, ..., ot] and search value function νt ≈ E
[ut+1 + γut+2 +...|o1, ..., ot] that both selects an action and predicts cumu-
lative reward given past observations o1, ..., ot. At each internal node, 
it makes use of the policy, value function and reward estimate produced 

by the current model parameters θ, and combines these values together 
using lookahead search to produce an improved policy πt and improved 
value function νt at the root of the search tree. The next action at+1 ≈ πt 
is then chosen by the search policy.

All parameters of the model are trained jointly to accurately match 
the policy, value function and reward prediction, for every hypo-
thetical step k, to three corresponding targets observed after k actual 
time steps have elapsed. Similarly to AlphaZero, the first objective is 
to minimize the error between the actions predicted by the policy  
pt

k  and by the search policy πt+k. Also like AlphaZero, value targets  
are generated by playing out the game or MDP using the search  
policy. However, unlike AlphaZero, we allow for long episodes with 
discounting and intermediate rewards by computing an n-step return 
zt that bootstraps n steps into the future from the search value,  
zt = ut+1 + γut+2 + ... + γn−1ut+n + γnνt+n. Final outcomes {lose, draw, win} in 
board games are treated as rewards ut ∈ {−1, 0, +1} occurring at the 
final step of the episode. Specifically, the second objective is to min-
imize the error between the value function vt

k and the value target, 
zt+k. The third objective is to minimize the error between the predicted 
immediate reward r t

k and the observed immediate reward ut+k. Finally, 
an L2 regularization term is also added, scaled by a constant c, leading 
to the overall loss

∑ ∑ ∑l θ l π p l z v l u r c θ( ) = ( , ) + ( , ) + ( , ) + || || , (1)t
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where lp, lv and lr are loss functions for policy, value and reward, respec-
tively. Supplementary Fig. 2 summarizes the equations governing 
how the MuZero algorithm plans, acts and learns. We note that for 
chess, Go and shogi, the same squared error loss as AlphaZero is used 
for rewards and values. A cross-entropy loss was found to be more 
stable than a squared error when encountering rewards and values 
of variable scale in Atari. Cross-entropy was used for the policy loss 
in both cases.
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Fig. 2 | Evaluation of MuZero throughout training in chess, shogi, Go and 
Atari. The x axis shows millions of training steps. For chess, shogi and Go, the y 
axis shows Elo rating, established by playing games against AlphaZero using 
800 simulations per move for both players. MuZero’s Elo is indicated by the 
blue line and AlphaZero’s Elo is indicated by the horizontal orange line. For 
Atari, mean (full line) and median (dashed line) human normalized scores 

across all 57 games are shown on the y axis. The scores for R2D219 (the previous 
state of the art in this domain, based on model-free RL) are indicated by the 
horizontal orange lines. Performance in Atari was evaluated using 50 
simulations every fourth time step, and then repeating the chosen action four 
times, as in previous work39. Supplementary Fig. 1 studies the repeatability of 
training in Atari.

any questions?
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