Reinforcement Learning

Tree search

So far, we've assumed that we have no control over the
environment we're learning in. All we can do is take an action,
and observe the result.

This is not always true. In many cases, we have some, or even
perfect access to the transition function and the reward.
Consider, for instance the case of playing a game like tic-tac-toe
or chess against a computer opponent. We don't have to play a
single game from start to finish, never considering alternatives
or trying different approaches. We can actually explore
different paths and try different approaches to see what the
consequences are.

We can use this during training to try and explore the state
space more efficiently. We can also use it during in production
(for instance when we are playing a human opponent) to make
our policy network more powerful: we try different moves
observe what a computer player would do, and search a few
moves ahead. In general, this is a good way to improve the
judgements made by a policy network.

In general, we'll call such methods tree search. From the
perspective of the agent, the space of possible future scenarios
has the shape of a tree: all the actions we can take, all the states
that can follow those actions, all the actions we can take in all of
those states and so on. If we have access to the state transition
function, or a good simulation of it, we can use that to explore
the state space ahead of us a little bit before comitting to an
action.

|section|Tree search|
|video|https://www.youtube.com/embed/R4souHAdRP4|

The combination of deep reinforcement learning and tree
search has led to one of the most important breakthroughs in
Al in recent years. In 2016 AlphaGo, a Go playing computer
developed by the company DeepMind beat Lee Sedol, one of the
best players in the world. Many Al researchers were convinced
that this Al breakthrough was at least decades away.

image source: http://gadgets.ndtv.com/science/news/lee-

The game of Go

rele®

Since we're using Go as a target for these methods, here is some
intuition about how Go works. The rules are very simple:
players (black and white) move, one after the other, placing
stones on a 19 by 19 grid. The aim of the game is to have as
many stones on the board, when no more stones can be placed.
The only way to remove stones is to encircle your opponent.

The general structure of this game is the same as tic-tac-toe or
chess: it's:

+ two player, turn-based

- perfect information, both players can see all there is to
know about the state of the game by looking at the board.

- zero sum if one player loses, the other wins and vice versa. If
a state is good for one player it is precisely equally bad for the

other player.

The reason Go was considered so difficult to solve compared to
chess was simply that the game tree was so broad and deep: at
any given point a player must choose between hundred of
possible moves and and a game has 211 turns on average.
Compare this to chess, which has about 20 possible moves at
any one point and lasts about 40 moves on average.

It's sometimes said that the sheer number of possible positions in
Go is larger than the number of atoms in the universe and that
that is what. makes it so difficult. This is partly misleading and
partly false. The number of possible chess positions is also vast
(1046 possible distinct positions and 10120 nodes in the game tree,
with the number of atoms in the universe somewhere in between)
and we managed to solve that just fine without any learning at
all.

What makes Go so difficult is partly it breadth. The number of
possible moves per turn is what makes it impossible to search the
full tree even two moves ahead moves ahead. Moreover, humans
seem to use a kind of visual intuition to break through this
complexity which is very hard to capture in simple rules, which
suggests that learning may be a worthwhile approach.

environment: some fixed opponent(s)
Iterate from a random player

episodes: games against opponent
Play by sampling from the output distribution

state: board
action: placing a cross or circle

policy: neural network
outputs probabilties over 9 possible actions

value function: neural network
RL requires only a policy, but it can be helpful to have a
value network too

DO

o‘o‘o

olx

To finish up, let’s see what this looks like in our our tic-tac-toe
example.

In principle the only requirement for the value network is that
the better the state is (according to the network), the higher the
value, but in practice, a good way to define the value is to make
it an estimate of the expected reward from the given state, using
the current policy.

g ?:@ i T This is what we would do in a regular RL setting, where we
v o v o v o don't know anything about the environment.
In the case of a full information game, however, we actually
— - have access to the whole state graph. We already know all the
rules of the environment. We can use this to our advantage.
% 1
1
ofo 0jo04 ﬂﬂﬂ
oo 0 o ﬂ ﬂ
ofo v 0jojo v ﬂﬂ v
reward=0 X feward=0 X I ewarde XIXIO .
ourmove X their move ourmove theirmove our move their move The main concept we will be building on in this section is the
:ﬁ: X |0 game tree. This is a tree with the start state at the root. Its
:Et: .o child nodes are the states that can be reached in one move by
Eﬁ: X o o o the player who moves first. For each of these children all their
:’:tx . Q children are the states that can be reached by the player who
:H: o X 00 moves second, and so on until we get to the leaf nodes: those
:‘i :I:lj O :EE’(O XC states where the game has ended.
— o ;(’Zf_c o Even for a game as simple as tic tac toe, the full game tree is too
:ﬁ: -1 o o o big to show in a slide like this. What we've shown here is just a
« g small part of the full tree.
:‘:l: 0 ;-H; e The key idea to tree search methods is that by exploring this
:Et: © 3 ’ tree, from the node representing the current state of the game,
we can reason about which moves are likely to lead to better
outcomes.
This is similar to the state space we get when we cast this as a
reinforcement learning problem but not quite the same. In that
case we only see states where the opponent has moved, so only
half of these nodes are states the the RL agent would observe.
eurmore Since even the tic tac toe game tree is too complex to fully plot,
we will use this game tree as a simple example. It doesn't
et move correspond to any particular realistic game, but you can
hopefully map the idea presented here to the move realistic
game trees of tic tac toe, chess and go.
their move
they win
we win they win they win draw wewin theywin draw 8

Tree search

- Rollouts

- Minimax

- Monte Carlo Tree Search

How to:

- use them without any learning,

- use them after you've learned a policy and value net,

- use to learn apolicy and value net.

We'll look at a few simple methods of tree search. These by
themselves are not reinforcement learning methods. They
aren't even learning methods in any meaningful way. All of
them just explore the game tree as much as possible, and try to
come up with a good move.

This is how many of the earliest game playing engines worked:
they just search the game tree from the current state, return a
good move and play it. The opponent plays their move, and they
start the whole process again.

For each of them we will first see how they work by themselves,
and then we will see how we can use them to improve an
existing policy during play, and how to use it during training to
improve a policy network.

our move

their move

our move|

their move

our move

We start with a simple, but powerful idea: random rollouts.

First, we label the leaf nodes with their value. This is 1 if we
win in that node, 0.5 if there is a draw, and 0 if the opponent

wins.

In the previous sections we used -1, 0 and 1 as rewards, but the
difference is arbitrary for almost all algorithms. The current
values serve to make the exposition clearer when we get to the
MCTS algorithm.

In this picture, we have the next move, so we need to decide
between move 1 and move 2.

The way random rollouts work is that for every node we reach
by making one of the moves we're considering, we simply
simulate a series of random games starting at that node. This
means that we just play random moves for both players until
we reach a leaf node. This is called a random rollout.

We then average all the values we get at the end of each rollout
per starting node. In this example, we get -2/3 for move 1, and
0 for move 2. We take this as estimates for the values of the two
nodes we reach by playing the two moves.

In this case, the node following move 2 gives us the highest
estimated value, so we choose to play move 2.

random rollouts

given start state s

for all possible moves a:
let s' be the result of playing a
repeat N times:

simulate a full random game froms'
play random moves for both opponents

observe outcome: 1 for win, 0 for draw, -1 for loss

play the move a that led to the highest average outcome

Here is the algorithm in pseudocode.

It may seem a little mysterious why random rollouts work at all
against a non-random player, since these random games will be
so different. One way to think about it is that we're evaluating
different subtrees. If the subtree below node 1 has many more
leaf nodes where we win, than the subtree below node2, then it
can't be too bad to move to node 1, since at the very least there
are many opportunities to win from that node.

Perhaps the opponent is too smart to let us get to any of those
opportunities, but for such a simple method it gives us a pretty
good opportunity.

g
e Jo

e I
& M
e JE

e e

el

Do
Y

[[3 D=
g
[[> D=
€]
18-
>0
Do
I 0o

Here is an illustration for why even such random play can be
informative. Chess is a particularly illustrative example, since
random play is so far removed from what a good player would
do. Therefore, how could a series of random plays tell us
anything about what intelligent players would do from a given
state?

In this chess position, black has just made a tremendous
blunder, by moving its queen in the path of the white knight.
White can take the queen with no repercussions. Can random
rollouts identify that taking the queen is a good move?

If white doesn't take the queen, and moves, say, one of its
pawns instead, all the rollouts from that point are games with
equal material, and they will likely all end in a draw. If white
takes the queen, all random rollouts are played with a massive
material advantage for white, and even though most of them
will still end in a draw, the probability that we will see a
checkmate increases. With enough random rollouts, we should
be able to tell the difference.

Of course, the difference is still minimal, and for such an
obviously good move, we'd like to draw our conclusions a little
quicker.

policies and value functions

policy function: p(a[s)

Used to simulate an agent or assign probabilities of
winning to a state.

value function: V(s)

Used as a heuristic to value particular states during search
or to estimate the expected outcome.

To improve rollouts, and tree search methods, we can introduce
policies and value functions.

For now, we won't assume that these are neural nets, so we
don't need to worry about training them. You can imagine using
a simple handwritten policy and value function that isn't great,
but is probably better than picking random moves.

For instance, we could define a policy function that plays
entirely randomly, except that it assigns a little more
probability to moves that capture a piece. Likewise with the
value function: we could write simple value function that
assigns -1, 0 and 1 to lost, drawn and won states respectively,
but assigns values in [-1, 0] for states where the opponent has a
material advantage, and states in [0, 1] for states where we
have a material advantage.

Another difference is that policies in reinforcement learning were
only defined from the perspective of one player. There are simple
fixes for this. If we have a policy for white in chess, we can, for
instance simply invert the board (making white pieces black and
vice versa) to get a policy for black. The precise details depend on
what the implementation looks like, but the zero sum nature of
these games means that a good policy for one player is always
automatically also a good policy for another player. The move
player 1 likes a move, the less player 2 likes it.

random rollouts

given start state s
for all possible moves a:
let s' be the result of playing a

repeat N times: on
P . uv«:\;\,o
’ ol .
simulate a full rie- anéTroms
play random moves for both opponents

observe outcome: 1 f¢— value funcé‘.‘;;":)ss

play the move a that led to the highest average outcome

If we now look at the random rollout algorithm again, we see
that we are implicitly already using a very simple policy and a
very simple value function. The policy function we are using is
simply a fully random one. And the value function is one that
only assigns non-zero values to leaf nodes.

We can now improve the algorithm by replacing these with a
better policy function and a better value function to improve
the rollouts.

rollouts with a policy and a value function

with a policy function:

Instead of playing random moves, sample moves from the
policy.

with a value function:

Limit the rollout depth, and label nodes with the value
from the value function.

We replace the random moves with moves sampled from the
policy. As noted before, it's usually a simple matter to turn a
policy for player 1 into a similar policy for player 2.

If we have a value function, what we can do is limit the depth of
the rollout (either to a fixed value or a random one). This allows
for faster rollouts, meaning that we can do more rollouts in the
same time, but it also allows us to recognize that we have an
advantage without going through all the highly particular steps
of the endgame. In particular in a game like chess, it's unlikely
that a mostly random policy will find a checkmate, but if we
have a strong material advantage, the value function can let us
know that much earlier.

P olue function labels the nodes)

é é g our move
1 0 0 16

our move

their move

our move|

their move

rollouts during play

Train the networks normally
Using policy gradients, Q-learning, random search, etc.

Use them in the rollout algorithm to improve the policy
The rollout algorithm should pick a better move than the policy network by itself

Ok, so let's imagine we've managed to train up a policy network
and a value network somehow. How do we use the idea of
rollouts?

The first idea is to use it during play. That is, when we're
training, we don't use tree search at all, but when the time
comes to face off against a human player, we take our policy
network and we take our value network and we put them into
the rollout algorithm. Then we play the moves that the
rollout algorithm returns.

The idea here is that we could simply play whatever the policy
network suggests directly, but with the right hyperparameters,
the rollout algorithm should usually do better than the plain
policy algorithm it uses internally. We use the rollout

algorithm to improve the policy.

This is more or less how the first AlphaGo worked. It used a
different tree search algorithm (which we'll discuss later), but the
basic idea was the same: during training use policy gradients and
simple reinforcement learning to train a policy network and a
value network, and then during play, use those inside a tree-
search network.

Given a policy p. :H:

Generate a realistic game state s.

For instance by letting p play a game against some opponent (maybe itself). 0.8
Do rollouts from s to estimate values for all actions.

- Train the value network to mimic these values
Instead of the ones it now predicts (L2 loss).

- Train the policy to predict what rollout will chose

to do

Log loss: minimize ~log p(a) for the chosen action a. state:

rollouts during training

p(action)

0|0
=il

STsls

rollouts during training

Tree search functions as a policy improvement operator.
init policy porandomly
loopt=0,1,2,..

train pe1 to mimic rollout(py)

We're looking for the fixed point of the improvement
operation.

In contrast to this approach we can also use the tree search
during training. The key insight here was already stated in the
last slide rollouts are a way to improve your policy. In fancy
terms: they are a policy improvement operator.

That is, if we trust that the move chosen by rollouts with our
policy is always better than the move chosen by our policy
alone, then we can use the move chosen by the rollout
algorithm as a training target, for the next iteration of our
algorithm.

That is, starting with policy po, we train the next policy p1 to
mimic what the rollout algorithm does when augmented with
p1. When this learning has converged (or simply afetr a few
steps), we discard po, and train a new policy p2 to mimic what
the rollout algorithm does when augmented with p1, and so on.

For the value network we can do the same thing. The average
value over all the rollouts should be a better value function than
the value function we start with, so we can train the next value
network to mimic the average values returned by the rollouts
using the old value network.

One benefit of this approach is that it stops working when we
have found a fixed point of the policy improvement operator. If
the rollout algorithm returns the same move probabilities and
values as the policy and value networks we started out with,
the policy improvement operator has become useless, and the
policy by itself contains everything we need. This means that (if
we can be sure we've reached a fixed point), we can actually
discard the tree search during play, and play only with the
policy network, which is a lot faster.

The idea of using tree search as a policy improvement operator
during training was introduced in AlphaZero.

our move

The next tree search algorithm we'll look at is called minimax.
The basic idea here is that if we had sufficient compute to
et move search the whole tree, we should be able to play perfectly: if it's

possible to guarantee a win, we should win.

wurmond Assuming that we can search the whole tree, how should we
choose our move? The idea of minimax is that the player whose
turn it is labels each node with the best score they can

their move guarantee from that node. For us, this is the maximum score,

and for the opponent, this is the minimum score.

ourmove This is why the algorithm is called minimax: we are maximizing
the score, and the opponent is minimizing the score.

For the nodes at the top we have no idea what we can
guarantee, but for the nodes one step away from the leaves, it's
easy to see. In most of these nodes, it's the opponent's turn, so
we know that if we hit these nodes, there is only one move left,
and the opponent chooses that. In short, whatever the lowest
outcome is among the children, we know that the opponent can
guarantee that.

For instance, in the highlighted node, there are two children,
with outcomes 0 and 0.5. The opponent prefers the minimum,
so we know that from this node, the opponent can guarantee an
outcome of 0, and there's nothing we can do about it. Unless the
opponent plays sub-optimally, we know the value of this node is
0.

With this logic, we can label all nodes that are one opponent
move away from the leaf node. No matter what we do, if the
opponent plays their best, this is the outcome. Note that some
of these nodes still have a value of 1. If we maneuver the
opponent into this state, we've already won. Even though they
still have a move left, there's nothing they can do to avoid us
winning.

Now that we know the value of these nodes for a fact, we can
move up the tree. This time it's our turn. For every parent of a
set of nodes whose value we know, we simply label it with the
maximum of all the values of the children. Again, in some cases,
we cannot avoid a loss, despite the fact that we're in control.

Note that we're always taking the maximum or the minimum.
Unlike in rollouts, where we were averaging over all nodes
visited, here only one leaf node ultimately decided the value of the
internal nodes.

Moving up the tree like this, we see that despite the fact that
there are many branches where we can force a win, if the
opponent plays optimally, the can guarantee that we never visit
those branches. Unless we get lucky and they make a mistake,
the best we can do is to force a draw.

minimax (full search) Here is a recursive, depth-first implementation of minimax.

Usually breadth-first is a more flexible way to implement
function minimax(s): minimax, but this leads to the simplest pseudocode. In practice
if s is a leaf node: you can also work out that certain parts of the tree don't need
return value(s) exploring (because some player can already guarantee a better
values =] score somewhere else that that part of the tree can offer). This is
for a in moves(s): called alpha-beta pruning.
let s' be the result of playingain s

add minimax(s') to values

return max(values) if my_turn(s) else min(values)

using a policy and value function

with a value function:

Set maximum depth. Minimax the values from the value
function.

with a policy function:

Ignore low-probability nodes (beam search), sample next
node to expand based on policy.

In practice, tic-tac-toe is about the only game for which you can
realistically search the whole game tree. In practice, we limit
our search to a subtree.

The traditional way to do this is with a value function. We
search the whole tree but only up to a maximum depth. At this
depth, we use the value function to label the nodes, and then
work these back up the tree.

This simple algorithm formed the basis for Deep Blue, the first
chess computer to beat a grandmaster. IBM simply spent a lot of
time developing a very strong, hand tuned value function, and
then built custom hardware to implement the minimax algorithm
very efficiently.

It's less popular in combination with minimax, but we could
also include a policy function here. This could, for instance
allow us to prioritize certain nodes over others, searching them
first. In real chess matches, time is a factor, so chess computers
need to search as much of the tree as they can, within a
particular time limit. A policy function can help us determine
which moves are more likely to yield good results, so we can
search different parts of the tree to different depths.

minimax with learned policies and values

minimax during play:

Use the policy and value networks to search a subtree of
the gametree.

minimax during training:

Use minimax as a policy/value improvement operator.

If we have learned policies and value functions, we can use the
same approaches we used before. We can train the policy and
value network using basic reinforcement learning, and then
during play, given them a little boost by using them to search
the game tree with minimax.

But, we can also use minimax as a policy improvement
operator. If we can trust that the moves chosen, and the values
assigned by minimax are really better than those of the plain
networks by themselves, we can simply set them as targets for
a new iteration of the policy and value network.

As you may have concluded yourself already, minimax and
rollouts are at something of a spectrum. Minimax searches the
whole tree. Using a value function and a policy, we can limit this
search to a subtree. Rollouts is the most extreme case of
searching just a subtree: we search only a single path, but, we
do it multiple times and average the results. We can, of course,
come up with a variety of algorithms that are somewhere in
between: always searching subtrees probabilistically, and
repeating the search to reduce variance.

One of the more elegant algorithms to combine the best of both
worlds is Monte Carlo Tree Search (MCTS). This is the basic
algorithm that was used to beat Lee Sedol at Go.

0/0 ->0/1

0/0 ->0/1

Here's how MCTS works.

We will build a subtree of the game tree in memory step by
step. At first this will be just the root node, which we will
extend with one child at a time. Each node, we will label with a
probability: the times we've won from that node, over the total
times we've visited that node. At the start this value is 0/0 for
the root node, and there are no other nodes in the tree.

We then iterate the following four steps

+ Selection: select an unexpanded node. At first, this will be
the root node. But once the tree is further expanded we
perform a random walk from the root down to one of the
leaves.

+ Expansion: Once we hit a leaf, we add one of its children to
the tree, and label it with the value 0/0

+ Simulation: From the expanded child we do a rollout.

* Backup: If we win the rollout let v = 1 otherwise v = 0. For
the new child and every one of its parents update the value. If
the old value was a/b, the new value is a+v / b+1. The value
is the proportion of simulated games crossing that state that
we’ve won.

Backup is sometimes. called backpropagation, which is not to be
confused with the backpropagation used in neural networks.

0/1 ->0.5/2

0/0->0.5/1

0/1 ->0.5/2

In the next step we expand another node. This could be any
child of a node already expanded. Currently, we have three
options, the two children of the node we just added, of the
second child of the root node.

We could choose a node uniformly at random, or according to the
values of the nodes we have so far established. This is an
exploration/exploitation tradeoff, and a large part of using MCTS
effectively boils down to making this tradeoff carefully. The most
common techniques are too technical for this course, but the
wikipedia article on MCTS provides some pointers.

We proceed as before: we do a random rollout from the new
node, observe whether we've won the rollout and update the
values of all ancestors of the current node: we always
increment the number of times visited by one, and the number
of wins only if we won the rollout. If we drew (as in this case),
we increment by 0.5.

0.5/2 ->1.5/2

0/0 ->1/1

In the next iteration, we again add a node. Note that we again
have three options for nodes to add. We pick the second child of
the root node.

We do another rollout and this time we win.

Note how the values are backed up: only the newly expanded
node and the root note change their values, but not the other
two nodes in the tree.

You can think of the values on each node as an estimate of the
probability of winning when starting at that node. The other
two nodes were not part of this path, so their estimates aren't
affected by the trial.

monte carlo tree search

starting with a single node with value 0/0
loop:
select a node n to add to the graph
rollout from n

update n and all ancestors

Increment the denominator by 1 and the numerator with the result of the rollout.

After iterating for a while (usually determined by the game
clock), we have both a value for the root node, and an idea of
what the best move is (the one that leads to the child node with
the highest value).

MCTS with policies and values

with a policy function:

Instead of playing random moves, sample moves from the
policy.

with a value function:

Limit the rollout depth, and label nodes with the value

from the value function (these need to be win

probabilities)

QLSU"LH"‘M

same &S the rollout

The way we insert a policy function and a value function into
MCTS is the same as it was for the plain rollout algorithm. We
replace the random rollout with a policy rollout and we use the
value function by limiting the rollout depth and backing up the
values provided by the value function. This works best if the
values can be interpreted as win probabilities (i.e. they're
between 0 and 1).

minimax with learned policies and values

MCTS during play:

Use the policy and value networks to search a subtree of
the gametree.

MCTS during training:

Use MCTS as a policy/value improvement operator.

Again, we can use MCTS during play to boost the strength of the
learned policy and value networks. This is what the original
AlphaGo did when it beat Lee Sedol in 2016.

But, as before, we can also view MCTS as a way of improving a
given policy and value function. The strategy is exactly the same
as before, each new iteration is trained to mimic the behavior of
the MCTS used with the previous iteration.

AlphaGo (2016)

Start with imitation learning
Learn to copy human players

Train by playing against previous iterations and self
update weights by policy gradients

Boost network performance by MCTS

a Selection b Expansion c Evaluation d Backup

These were the basic ingredients of the first AlphaGo. It used
two policy networks, a fast one and a slow one, and a value
network. These were first trained by imitation learning from a
large database of Go games, and then by self play, using
reinforcement learning.

After training, during gameplay, the performance was boosted
by using the policy and value networks in a complicated MCTS
algorithm.

AlphaGo Zero ()

Learns from scratch, no imitation learning, reward shaping
etc.

Also applicable to Chess, Shogi....

Uses three tricks to simplify/improve AlphaGo

1. Combine policy and value nets

2. View MCTS as a policy improvement operator

3.

AlphaGo Zero ()

trick 1: Combine policy and value nets.

trick 2: Use MCTS during training as a policy improvement
operator.

trick 3: Use residual connections and batch normalization.

In 2017, DeepMind introduced an updated version: AlphaZero.
The key achievement of this system is that it eliminated
imitation learning entirely. It could learn to play go entirely
from scratch by playing against itself. DeepMind also showed
that the same tricks could be used to learn Chess and Shogi (a
Japanese game that is similar to chess).

Deepmind indicated in their paper that these were the main
improvements they introduced in AlphaGo.

The first two, we have already discussed.

Residual connections and batch normalization are two basic
tricks for training deeper neural networks more quickly. It is
likely that they simply weren't available or well enough
understood at the time of the first Alphago. These are not
specific to reinforcement learning, and can be used in any

two-headed beast

0.8
p(action) value
I
[] []
ofofo
state: 0 ST
oo

learning the policy and value functions

Policy network Value network
Policy network Value network
Py (@ls) v (8)
Py (@ls) v 8) g
-
L
. 1
L b A 'S

{

AlphaGo (2016) AlphaZero (2017)

Of course, these policy and values functions don't need to be
hand-written. They can also be learned. And this is where we
start to connect reinforcement learning to tree search.

These are rough illustrations of the network structures that
DeepMind used for their first AlphaGo instance. Both treated
the Go board as a grid, passing it through a series of
convolutional layers. The policy network then outputs the same
grid, softmaxing it to provide a probability distribution over all
the positions where the player can place a stone. The value
network uses an aggregation function to reduce the output to a
single numerical value.

Using the methods we've already discussed, like policy
gradients, q-learning, and imitation learning, these networks
can then be trained to provide a decent, fast player (the policy
network) and a good indication of the value of a particular
state.

In Q learning we trained a policy network and a value network in
one. We didn't discuss how to train a value network through
policy gradients. The idea used by DeepMind in the first AlphaGo
was that the value network V predicts for state s the value of the
game played from s by the policy against itself. That is, we simply
observe a game of the policy network playing against itself and
afterwards we assign the result as the target that V should
predict for s.

In this sense, the two networks are linked. The value network
predicts the value for the current policy. It's unclear from the
paper whether in this version of AlphaGo the policy network also
uses the value network in training, or only plays full games.

In a later version, called AlphaZero, the researcher hit on the
bright idea of making the lower layers of the two networks
shared. The idea here is that the lower layers to neural
networks tend to extract generic features that are largely task-
independent. By using the same layers for both tasks, these
parts of the network get a stronger training signal.

5,000
4,000 f/J
3,000
2,000
1,000

Elo rating

— AlphaGo Zero 40 blocks
-1,000 --- AlphaGo Master
2,000 --- AlphaGo Lee

0 5 10 15 20 25 30 35 40
Days

After 21 days of self-play (on a large computing cluster),
AlphaZero surpassed the performance of the version that beat
Lee Sedol.

Alpha Zero ()

5000 Chess Shogi
4000
o 3000
[}
2000 —— AlphaZero —— AlphaZero
1000 —— Stockfish — Elmo
0 i —
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Thousands of Steps

Thousands of Steps

Go

—— AlphaZero
AlphaGo Zero
—— AlphaGo Lee

0 100 200 300 400 500 600 700
Thousands of Steps

(Path) planning, theorem proving, query answering, etc.
Game tree search -> graph search
Rollouts -> random walks
Minimax -> Breadth/depth first search

MCTS -> MCTS / Beam search

Example Parking Problem

Search Sp:
5 Constant Curvature Arcs

Eucldean Eucidean

loGosl Navigation

398320

> M0 s

https://www.youtube.com/watch?v=j0z4FweCy4M

what if we don't know the rules?

just learn a "dynamics function" NB: You need a simple representation for the action space.

states, reward <- g(stateo, action)

for example: MuZero a) MCTS with a trained network.

b) MCTS collecting a replay buffer b acting in the environment
a R b with MCTS
)
e

~
‘azﬂ R

\e o @

o

; SN s UL NG SN - S .

3,000 B 3,000
o g
o H

2,000 & 2,000

1,000 1,000

0 0

0 02 04 06 08 10 0 02 04 06 08 10 0 02 04 06 08 10 0 02 04 06 08 10
Millons of training steps

Millions of training steps Millions of training steps Millions of training steps.

any questions?

