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Most problems of practical interest are
MDPs with very large (or continuous) state
spaces.
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How to structure these states?
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{S,A,P,R,v}

.  Equal rewards

L * Equal transitions J
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Bisimulation relations

Given an MDP {S, A, P, R, v}, an equivalence relation
E:8 x5 —{0,1} isabisimulation relation if whenever
x FEy we have:

1. Same rewards

2. Same transitions
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Bisimulation relations

Given an MDP {S, A, P, R, v}, an equivalence relation
E:8x8— 10,1} isabisimulation relation if whenever
x FEvy we have:

. Vae A, R(x,a) =R(y,a)
2.Ya € A,Vc e §/g, P(z,a)(c) ="P(y,a)(c)

(P(x,a)(c) = Z P(x,a)(x’))

s’ Ec
Two states x and y are bisimilar if there exists a bisimulation
relation E such that x £/y.



Bisimulation relations

Given an MDP {S, A, P, R, v}, an equivalence relation
E:8x8— 10,1} isabisimulation relation if whenever
x FEvy we have:

. Vae A, R(xz,a) =R(y,a)
2.Ya € A,Vc e §/g, P(z,a)(c) ="P(y,a)(c)

(P(x,a)(c) = Z P(a:,a,)(:z:’))

s’ Ec
Two states x and y are bisimilar if there exists a bisimulation

relation E such that x £/y.
Let ~ be the maximal bisimulation relation.



Bisimulation implies value equivalence

r~y = Vi) =V"(y)



Are x1 and x2 bisimilar?
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Are x1 and x2 bisimilar?
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If p =q, then yes!



Are x1 and x2 bisimilar?
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If p #q, then no!



Are x1 and x2 bisimilar?
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Bisimulation relations can be brittle!
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Metrics
Equivalence relations

1. Reflexivity
L ~ D
2. Symmetry
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3. Transitivity
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1. Reflexivity \ |dentity of iIndescernibles
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Equivalence relations Metrics
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1. Reflexivity \ |dentity of iIndescernibles
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Metrics i
]

1. Identity of indescernibles §
dlz,y) =0 <= =1y

2. Symmetry

d(z,y) = d(y, z)

3. Triangle inequality

dlz,z) <d(z,y)+ d(y, z)



Metrics ~ Pseudo-metrics
j

1. ldentity of indescernibles §

dz,y) =0 <= z =y ‘ d(z,y) > 0
2. Symmetry

3. Triangle inequality

dlz,z) <d(z,y)+ d(y, z)
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(also known as Optimal Transport)
(also known as Earth Movers Distance)
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The Kantorovich metric

max Y (P(x) ~ Q@)
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The Kantorovich metric

Primal
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The Kantorovich metric

Primal Dual
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The Kantorovich metric
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Bisimulation metrics

Definition: A metric d is a bisimulation metric if
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2. Assign distances as:
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3. Profit!



Bisimulation metrics

Definition: A metric d is a bisimulation metric if
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2. Assign distances as:
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Bisimulation metrics

Definition: A metric d is a bisimulation metric if

dlz,y) =0 < z~y Vz,yeS

Theorem: The functional F : M — M defined as

F(d)(z,y) = max{|R(z,a) — R(y, a)| + 1Tk (d)(P(z,a), P(y, a))}

has a unique fixed point d., and d., is a bisimulation metric
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Bisimulation metrics

Definition: A metric d is a bisimulation metric if

dlz,y) =0 < z~y Vz,yeS

Theorem: The functional F : M — M defined as

F(d)(z,y) = max{|R(z,a) — R(y, a)| + 1Tk (d)(P(z,a), P(y, a))}

has a unique fixed point d., and d., is a bisimulation metric

Theorem: |V (z) —V*(y)| <d-(z,y) Vr,yeS



A brief overview of
some (tabular) extensions
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Definition 5. Given a finite 1-bounded metric space (M ,d), let P (M ) be the set of compact spaces
(e.g. closed and bounded in R). The Hausdorff metric H(d) : P(M ) x P (M ) — |0, 1] is defined as:

H(d)(X,Y)=max(sup infd(x,y),sup infd(x,y))
xeXyeyY yeY xeX

Definition 6. Denote X; = {(s,a)|a € A}. Let M be the set of all semimetrics on S. We define the
operator ' : M — M as F(d)(s,u) = H(0(d))(X;,X,)

Theorem 8. Let esix be the metric defined in (Ferns et al., 2004). Then we have:
eV (5) = V()] < diinls, ) < ein(s, u)




On planning, prediction and

knowledge transfer in Fully and

Partially Observable Markov
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Definition 4.16. A relation £ C S x S is said to be an option-bisimulation

relation if whenever sE't:

1. Yo, R(s,0) = R(t,0)

2. Vo,NC € S/E. ), .- Pr(s'|s,0) =) ..o Pr(s|t, o)

Theorem 4.17. The functional F' : M — M defined as

F(d)(s,t) = max ((s, 0) = R(t,0)| + YTk (@)(Pr(:]s,0), Pr(|t,0)

has a greatest fized-point, d.., and d. is an option-bistmulation metric.

Theorem 4.18. If s ~o t, then W*(s) = W*(t).




Bisimulation metrics for policy transter
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Bisimulation metrics for policy transter
Ml — {817“47 73177217’7}_>-Z\42 — {827-’47 P27R27’7}



Bisimulation metrics for policy transter
Ml — {817A7 731,72177}_>M2 — {827-’47 P27R277}

ma(y) =7 (arg min d..(x, y))

reES,
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Bisimulation metrics for policy transter
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Break!



Bisimulation metrics are great
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Bisimulation metrics are great
put...

1. They're inherently pessimistic and only for 1t*

fAE W

F(d)(z,y) =max{|R(z,a) — R(y,a)| + YTk (d)(P(z,a),P(y,a))}

1iacA
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Bisimulation metrics are great
put...

1. They're inherently pessimistic and only for 1t*

F(d)(z,y) =max{|R(z,a) — R(y, a)| + 1Tk (d)(P(z,a), P(y, a))}

2. They're expensive to compute

o (1S 1Alksto)

log(y)
3. They require a full model and full state enumerabillity

Ik (P(ZE, a)v P(ya a))
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1. They're inherently pessimistic
Solution: Tt-bisimulation!



Solution: Tt-bisimulation!

Given an MDP {S, A, P, R, v} and policy 1, an equiv. relation
E:8x8 —{0,1} isam-bisimulation relation if whenever
r Lt we have:

. Ry =R,
2.Vce S/g, Pg(c)="P;(c)

Two states x and y are Tt-bisimilar if there exists a bisimulation
relation E such that xEy.

Let ~# be the maximal bisimulation relation.



Solution: Tt-bisimulation!

Definition: A metric d is a Tt-bisimulation metric if
dlz,y) =0 < T~y Ve,y €S
Theorem: The functional 7" : M +— M defined as
Fr(d)(@,y) = [RT — RY| + 7Tk (d)(PF, P})

has a unique fixed point de and d,\,7r IS a Tt-bisimulation metric

Theorem: (V™ (x) — V™ (y)| <d~ (x,y) Vx,y€ S
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Solution: Sampling!

dn(s,t) =d,_1(s,1), Vs # sp,t # ty,
dn—l(snatn)a

dp(Sn,tn) = max R(Sn,an) — R(tn,an)|+
Vdn—l(/(snaan)a/(tman))

Theorem: If d,, is updated as above and dp = 0, then

lim d,, = d~._ almost surely.
T
n— 00



Solution: Sampling!

dn(s,t) =d,_1(s,1), Vs # sp,t # ty,
dn—l(snatn)a

dp(Sn,tn) = max R(Sn,an) — R(tn,an)|+
Vdn—l(/(snaan)a/(tman))

Theorem: If d,, is updated as above and dp = 0, then

lim d,, = d~._ almost surely.
T
n— 00

Caveat: Only holds for deterministic MDPs.
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3. They require full state

enumerabllity
Solution: Use neural nets!
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Solution: Use neural nets!
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Does it work?




Tt-bisimulation metrics are great
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Tt-bisimulation metrics are great
out...

1. They require a pre-trained agent

2. They assume determinism
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Deep Bisimulation for Control
(DBC)




Deep Bisimulation for Control

(DBC)
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Figure 6: Bisim. results. Blue is DBC
and orange 1s Castro (2020).
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What Is a good distance?






numPoints: (100

Distribution

0.4 Samples

.35
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.05

stdDev: |1.0 Regenerate samples

From https://psc-g.github.io/posts/research/rl/mico/
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Agarwal, Schwarzer, Castro, Courville, & Bellemare, NeurlPS, 2021



Thanks! Some other recent work:

lax Y ~Mlax —
d dAVF(n)
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Agarwal, Machado, Castro, & Bellemare;
ICLR 2021



