State-similarity metrics

Most problems of practical interest are MDPs with very large (or continuous) state spaces.

Unstructured states
 \mathcal{X}

How to structure these states?

$\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$

$$
\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}
$$

$\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$

$$
\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}
$$

- Equal rewards
- Equal transitions

$$
x \stackrel{?}{=} y
$$

Which states are equivalent?

8 states => 4 states!
$V^{*} \equiv \hat{V}^{*}$

Bisimulation relations

Equivalence notions and model minimization in Markov decision processes

Robert Givan ${ }^{\text {a,* }}$, Thomas Dean ${ }^{\text {b }}$, Matthew Greig ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
${ }^{\text {b }}$ Department of Computer Science, Brown University, Providence, RI 02912, USA

Bisimulation relations

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a bisimulation relation if whenever $x E y$ we have:

1. Same rewards
2. Same transitions

Bisimulation relations

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a bisimulation relation if whenever $x E y$ we have:

1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a)=\mathcal{R}(y, a)$
2. Same transitions

Bisimulation relations

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a bisimulation relation if whenever $x E y$ we have:

1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a)=\mathcal{R}(y, a)$
2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S} / E, \quad \mathcal{P}(x, a)(c)=\mathcal{P}(y, a)(c)$

Bisimulation relations

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a bisimulation relation if whenever $x E y$ we have:

1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a)=\mathcal{R}(y, a)$
2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S} / E, \quad \mathcal{P}(x, a)(c)=\mathcal{P}(y, a)(c)$

$$
\left(\mathcal{P}(x, a)(c)=\sum_{s^{\prime} \in c} \mathcal{P}(x, a)\left(x^{\prime}\right)\right)
$$

Bisimulation relations

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a bisimulation relation if whenever $x E y$ we have:

1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a)=\mathcal{R}(y, a)$
2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S} / E, \quad \mathcal{P}(x, a)(c)=\mathcal{P}(y, a)(c)$

$$
\left(\mathcal{P}(x, a)(c)=\sum_{s^{\prime} \in c} \mathcal{P}(x, a)\left(x^{\prime}\right)\right)
$$

Two states x and y are bisimilar if there exists a bisimulation relation E such that $x E y$.

Bisimulation relations

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a bisimulation relation if whenever $x E y$ we have:

1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a)=\mathcal{R}(y, a)$
2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S} / E, \quad \mathcal{P}(x, a)(c)=\mathcal{P}(y, a)(c)$

$$
\left(\mathcal{P}(x, a)(c)=\sum_{s^{\prime} \in c} \mathcal{P}(x, a)\left(x^{\prime}\right)\right)
$$

Two states x and y are bisimilar if there exists a bisimulation relation E such that $x E y$.
Let \sim be the maximal bisimulation relation.

Bisimulation implies value equivalence

$$
x \sim y \Longrightarrow V^{*}(x)=V^{*}(y)
$$

Are $x 1$ and $x 2$ bisimilar?

Are $x 1$ and $x 2$ bisimilar?

If $p=q$, then yes!

Are $x 1$ and $x 2$ bisimilar?

If $\mathrm{p} \neq \mathrm{q}$, then no !

Are x 1 and x 2 bisimilar?

Bisimulation relations can be brittle!

Equivalence relations

1. Reflexivity

2. Symmetry
3. Transitivity

Equivalence relations

1. Reflexivity
$x \sim x$
2. Symmetry
3. Transitivity

Equivalence relations

1. Reflexivity

$$
x \sim x
$$

2. Symmetry

$$
x \sim y \Longleftrightarrow y \sim x
$$

3. Transitivity

Equivalence relations

1. Reflexivity

$$
x \sim x
$$

2. Symmetry

$$
x \sim y \Longleftrightarrow y \sim x
$$

3. Transitivity

$$
x \sim y \text { and } y \sim z \Longrightarrow x \sim z
$$

Equivalence relations

1. Reflexivity

$x \sim x$

2. Symmetry

$$
x \sim y \Longleftrightarrow y \sim x
$$

3. Transitivity

$$
x \sim y \text { and } y \sim z \Longrightarrow x \sim z
$$

Symmetry

Triangle inequality

Equivalence relations

1. Reflexivity

$$
x \sim x
$$

2. Symmetry

Identity of indescernibles

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

Symmetry

Triangle inequality

$$
x \sim y \text { and } y \sim z \Longrightarrow x \sim z
$$

Equivalence relations

1. Reflexivity

$$
x \sim x
$$

2. Symmetry

$$
x \sim y \Longleftrightarrow y \sim x
$$

3. Transitivity

$$
x \sim y \text { and } y \sim z \Longrightarrow x \sim z
$$

Identity of indescernibles

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

Symmetry

$$
d(x, y)=d(y, x)
$$

Triangle inequality

Equivalence relations

1. Reflexivity

$$
x \sim x
$$

2. Symmetry

Identity of indescernibles

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

Symmetry

$$
d(x, y)=d(y, x)
$$

Triangle inequality

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

Metrics

1. Identity of indescernibles

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

2. Symmetry

$$
d(x, y)=d(y, x)
$$

3. Triangle inequality

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

Metrics

Pseudo-metrics

1. Identity of indescernibles

$$
d(x, y)=0 \Longleftrightarrow x=y
$$

$$
\begin{aligned}
& d(x, x)=0 \\
& d(x, y) \geq 0
\end{aligned}
$$

2. Symmetry

$$
d(x, y)=d(y, x)
$$

3. Triangle inequality

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

The Kantorovich metric

The Kantorovich metric
(also known as Wasserstein metric)

The Kantorovich metric

(also known as Wasserstein metric) (also known as Optimal Transport)

The Kantorovich metric
(also known as Wasserstein metric) (also known as Optimal Transport)
(also known as Earth Movers Distance)

The Kantorovich metric

The Kantorovich metric

P

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

The Kantorovich metric

$$
\max _{\mu} \sum_{x \in \mathcal{S}}(\mathcal{P}(x)-\mathcal{Q}(x)) \mu_{x}
$$

subject to

$$
\begin{array}{r}
\mu_{x}-\mu_{y} \leq d(x, y) \quad \forall x, y \in \mathcal{S} \\
\mu_{x} \geq 0 \quad \forall x \in \mathcal{S}
\end{array}
$$

The Kantorovich metric
 Primal

$$
\max _{\mu} \sum_{x \in \mathcal{S}}(\mathcal{P}(x)-\mathcal{Q}(x)) \mu_{x}
$$

subject to

$$
\begin{array}{r}
\mu_{x}-\mu_{y} \leq d(x, y) \quad \forall x, y \in \mathcal{S} \\
\mu_{x} \geq 0 \quad \forall x \in \mathcal{S}
\end{array}
$$

The Kantorovich metric

Primal

$$
\max _{\mu} \sum_{x \in \mathcal{S}}(\mathcal{P}(x)-\mathcal{Q}(x)) \mu_{x}
$$

subject to

$$
\begin{array}{r}
\mu_{x}-\mu_{y} \leq d(x, y) \quad \forall x, y \in \mathcal{S} \\
\mu_{x} \geq 0 \quad \forall x \in \mathcal{S}
\end{array}
$$

Dual

subject to
$\sum_{y \in \mathcal{S}} \lambda_{x, y}=\mathcal{P}(x) \quad \forall x \in \mathcal{S}$

$$
\begin{array}{r}
\sum_{x \in \mathcal{S}} \lambda_{x, y}=\mathcal{Q}(y) \quad \forall y \in \mathcal{S} \\
\lambda_{x, y} \geq 0 \quad \forall x, y \in \mathcal{S}
\end{array}
$$

The Kantorovich metric Primal
 Dual

$$
\sum_{\leqslant \mathcal{S}} \lambda_{x, y} d(x, y)
$$

subject to ? $(x) \quad \forall x \in \mathcal{S}$
$\mu_{x}-\mu_{y} \leq d(x, ?$
μ_{x}

$$
T_{K}(d)(\mathcal{P}, \mathcal{Q})
$$

$2(y) \quad \forall y \in \mathcal{S}$

$$
\lambda_{x, y} \geq 0 \quad \forall x, y \in \mathcal{S}
$$

Bisimulation metrics

Metrics for Finite Markov Decision Processes

Norm Ferns
School of Computer Science
McGill University
Montréal, Canada, H3A 2A7
nferns@cs.mcgill.ca

Prakash Panangaden School of Computer Science McGill University Montréal, Canada, H3A 2A7 prakash@cs.mcgill.ca

Doina Precup
School of Computer Science
McGill University
Montréal, Canada, H3A 2A7
dprecup@cs.mcgill.ca

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

1. Compute bisimulation equivalence relation ~
2. Assign distances as:
$d(x, y)=0$ if $x \sim y, \quad d(x, y)=\infty$ otherwise.
3. Profit!

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

1. Compute bisimulation equivalence relation ~
2. Assign distances as:
$d(x, y)=0$ if $x \sim y, \quad d(x, y)=\infty$ otherwise. p
3. Profit!

$$
d(x, y)=\infty \text { otherwise. } \mathrm{p}
$$

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as
$\mathcal{F}(d)(x, y)=\max _{a \in \mathcal{A}}\left\{|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as
$\mathcal{F}(d)(x, y)=\max _{a \in \mathcal{A}}\left\{|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Difference in rewards

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as
$\mathcal{F}(d)(x, y)=\max _{a \in \mathcal{A}}\left\{|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma \mathcal{T}_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as
$\mathcal{F}(d)(x, y)=\max _{a \in \mathcal{A}}\left\{|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Bisimulation metrics

Definition: A metric d is a bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim y \quad \forall x, y \in \mathcal{S}
$$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as
$\mathcal{F}(d)(x, y)=\max _{a \in \mathcal{A}}\left\{|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Theorem: $\quad\left|V^{*}(x)-V^{*}(y)\right| \leq d_{\sim}(x, y) \quad \forall x, y \in \mathcal{S}$

A brief overview of some (tabular) extensions

Lax bisimulation metrics

Bounding Performance Loss in Approximate MDP Homomorphisms

Jonathan J. Taylor Dept. of Computer Science

University of Toronto
Toronto, Canada, M5S 3G4
jonathan.taylor@utoronto.ca

Doina Precup
School of Computer Science McGill University
Montreal, Canada, H3A 2A7
dprecup@cs.mcgill.ca

Prakash Panangaden School of Computer Science

McGill University
Montreal, Canada, H3A 2A7
prakash@cs.mcgill.ca

Lax bisimulation metrics

Definition 5. Given a finite 1 -bounded metric space (\mathcal{M}, d), let $\mathcal{P}(\mathcal{M})$ be the set of compact spaces (e.g. closed and bounded in \mathbb{R}). The Hausdorff metric $H(d): \mathcal{P}(\mathcal{M}) \times \mathcal{P}(\mathcal{M}) \rightarrow[0,1]$ is defined as:

$$
H(d)(X, Y)=\max \left(\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right)
$$

Definition 6. Denote $X_{s}=\{(s, a) \mid a \in A\}$. Let \mathcal{M} be the set of all semimetrics on S. We define the operator $F: \mathcal{M} \rightarrow \mathcal{M}$ as $F(d)(s, u)=H(\delta(d))\left(X_{s}, X_{u}\right)$

Theorem 8. Let $e_{f i x}$ be the metric defined in (Ferns et al., 2004). Then we have:

$$
c_{r}\left|V^{*}(s)-V^{*}(u)\right| \leq d_{f i x}(s, u) \leq e_{f i x}(s, u)
$$

Bisimulation metrics for options

On planning, prediction and knowledge transfer in Fully and Partially Observable Markov

Decision Processes
by

Pablo Samuel Castro

Bisimulation metrics for options

```
Definition 4.16. A relation E\subseteqS\timesS is said to be an option-bisimulation
relation if whenever sEt:
    1. }\forallo,R(s,o)=R(t,o
    2. }\forall0,\forallC\inS/E.\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}\inC}{}\operatorname{Pr}(\mp@subsup{s}{}{\prime}|s,o)=\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}\inC}{}\operatorname{Pr}(\mp@subsup{s}{}{\prime}|t,o
```

Theorem 4.17. The functional $F: \mathcal{M} \rightarrow \mathcal{M}$ defined as

$$
F(d)(s, t)=\max _{o \in O P T}\left(|\mathfrak{R}(s, o)-\mathfrak{R}(t, o)|+\gamma T_{K}(d)(\operatorname{Pr}(\cdot \mid s, o), \operatorname{Pr}(\cdot \mid t, o))\right.
$$

has a greatest fixed-point, d_{\sim}, and d_{\sim} is an option-bisimulation metric.
Theorem 4.18. If $s \sim_{O} t$, then $W^{*}(s)=W^{*}(t)$.

Bisimulation metrics for policy transfer

Using Bisimulation for Policy Transfer in MDPs

Pablo Samuel Castro and Doina Precup
School of Computer Science, McGill University, Montreal, QC, Canada pcastr@cs.mcgill.ca and dprecup@cs.mcgill.ca

Bisimulation metrics for policy transfer

$$
M_{1}=\left\{\mathcal{S}_{1}, \mathcal{A}, \mathcal{P}_{1}, \mathcal{R}_{1}, \gamma\right\} \longrightarrow M_{2}=\left\{\mathcal{S}_{2}, \mathcal{A}, \mathcal{P}_{2}, \mathcal{R}_{2}, \gamma\right\}
$$

Bisimulation metrics for policy transfer

$$
\begin{gathered}
M_{1}=\left\{\mathcal{S}_{1}, \mathcal{A}, \mathcal{P}_{1}, \mathcal{R}_{1}, \gamma\right\} \longrightarrow M_{2}=\left\{\mathcal{S}_{2}, \mathcal{A}, \mathcal{P}_{2}, \mathcal{R}_{2}, \gamma\right\} \\
\pi_{d}(y)=\pi^{*}\left(\arg \min _{x \in \mathcal{S}_{1}} d_{\sim}(x, y)\right)
\end{gathered}
$$

Bisimulation metrics for policy transfer

$$
\begin{gathered}
M_{1}=\left\{\mathcal{S}_{1}, \mathcal{A}, \mathcal{P}_{1}, \mathcal{R}_{1}, \gamma\right\} \longrightarrow M_{2}=\left\{\mathcal{S}_{2}, \mathcal{A}, \mathcal{P}_{2}, \mathcal{R}_{2}, \gamma\right\} \\
\pi_{d}(y)=\pi^{*}\left(\arg \min _{x \in \mathcal{S}_{1}} d_{\sim}(x, y)\right)
\end{gathered}
$$

Theorem: $\left|Q_{2}^{*}\left(y, \pi_{d}(y)\right)-V_{2}^{*}(y)\right| \leq 2 \min _{x \in \mathcal{S}_{1}} d_{\sim}(x, y)$

Bisimulation metrics for policy transfer

$$
M_{1}=\left\{\mathcal{S}_{1}, \mathcal{A}, \mathcal{P}_{1}, \mathcal{R}_{1}, \gamma\right\} \longrightarrow M_{2}=\left\{\mathcal{S}_{2}, \mathcal{A}, \mathcal{P}_{2}, \mathcal{R}_{2}, \gamma\right\}
$$

$$
\pi_{d}(y)=\pi^{*}\left(\arg \min _{x \in \mathcal{S}_{1}} d_{\sim}(x, y)\right)
$$

Theorem: $\left|Q_{2}^{*}\left(y, \pi_{d}(y)\right)-V_{2}^{*}(y)\right| \leq 2 \min _{x \in \mathcal{S}_{1}} d_{\sim}(x, y)$

Break!

Bisimulation metrics are great

Bisimulation metrics are great but...

Bisimulation metrics are great but...

1. They're inherently pessimistic and only for π^{*}

$$
\mathcal{F}(d)(x, y)=\max _{\substack{a \in \mathcal{A}}}\left\{\mathcal{R}(x, a)-\mathcal{R}(y, a) \mid+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}
$$

Bisimulation metrics are great but...

1. They're inherently pessimistic and only for π^{*}

$$
\left.\mathcal{F}(d)(x, y)=\max _{\substack{a \in \mathcal{A}}}|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}
$$

2. They're expensive to compute

$$
\tilde{O}\left(\frac{|\mathcal{S}|^{5}|\mathcal{A}| \log (\epsilon)}{\log (\gamma)}\right)
$$

Bisimulation metrics are great but...

1. They're inherently pessimistic and only for π^{*}

$$
\left.\mathcal{F}(d)(x, y)=\max _{\substack{\alpha \in \mathcal{A}}}|\mathcal{R}(x, a)-\mathcal{R}(y, a)|+\gamma T_{K}(d)(\mathcal{P}(x, a), \mathcal{P}(y, a))\right\}
$$

2. They're expensive to compute

$$
\tilde{O}\left(\frac{|S|^{5}|\mathcal{A}| \log (\epsilon)}{\log (\gamma)}\right)
$$

3. They require a full model and full state enumerability

$$
T_{K}(\mathcal{P}(x, a), \mathcal{P}(y, a))
$$

Scalable Methods for Computing State
Similarity in Deterministic Markov Decision Processes
Pablo Samuel Castro
Google Brain
psc@google.com

1. They're inherently pessimistic Solution: π-bisimulation!

1. They're inherently pessimistic Solution: π-bisimulation!

Given an $\operatorname{MDP}\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$ and policy π, an equiv. relation $E: \mathcal{S} \times \mathcal{S} \rightarrow\{0,1\}$ is a π-bisimulation relation if whenever $x E t$ we have:

1. $\mathcal{R}_{x}^{\pi}=\mathcal{R}_{y}^{\pi}$
2. $\forall c \in \mathcal{S} / E, \quad \mathcal{P}_{x}^{\pi}(c)=\mathcal{P}_{y}^{\pi}(c)$

Two states x and y are π-bisimilar if there exists a bisimulation relation E such that xEy.
Let \sim_{π} be the maximal bisimulation relation.

1. They're inherently pessimistic Solution: π-bisimulation!

Definition: A metric d is a π-bisimulation metric if

$$
d(x, y)=0 \Longleftrightarrow x \sim_{\pi} y \quad \forall x, y \in \mathcal{S}
$$

Theorem: The functional $\mathcal{F}^{\pi}: \mathcal{M} \mapsto \mathcal{M}$ defined as

$$
\mathcal{F}^{\pi}(d)(x, y)=\left|\mathcal{R}_{x}^{\pi}-\mathcal{R}_{y}^{\pi}\right|+\gamma T_{K}(d)\left(\mathcal{P}_{x}^{\pi}, \mathcal{P}_{y}^{\pi}\right)
$$

has a unique fixed point $d_{\sim_{\pi}}$ and $d_{\sim_{\pi}}$ is a π-bisimulation metric

Theorem: $\left|V^{\pi}(x)-V^{\pi}(y)\right| \leq d_{\sim_{\pi}}(x, y) \quad \forall x, y \in \mathcal{S}$

2. They're expensive to compute

2. They're expensive to compute Solution: Sampling!

2. They're expensive to compute Solution: Sampling!

$$
\begin{aligned}
d_{n}(s, t) & =d_{n-1}(s, t), \quad \forall s \neq s_{n}, t \neq t_{n} \\
d_{n}\left(s_{n}, t_{n}\right) & =\max \left[\begin{array}{c}
d_{n-1}\left(s_{n}, t_{n}\right), \\
\left|\mathcal{R}\left(s_{n}, a_{n}\right)-\mathcal{R}\left(t_{n}, a_{n}\right)\right|+ \\
\gamma d_{n-1}\left(\mathscr{N}\left(s_{n}, a_{n}\right), \mathscr{N}\left(t_{n}, a_{n}\right)\right)
\end{array}\right]
\end{aligned}
$$

Theorem: If d_{n} is updated as above and $d_{0} \equiv 0$, then $\lim _{n \rightarrow \infty} d_{n}=d_{\sim_{\pi}}$ almost surely.

2. They're expensive to compute Solution: Sampling!

$$
\begin{aligned}
d_{n}(s, t) & =d_{n-1}(s, t), \quad \forall s \neq s_{n}, t \neq t_{n} \\
d_{n}\left(s_{n}, t_{n}\right) & =\max \left[\begin{array}{c}
d_{n-1}\left(s_{n}, t_{n}\right), \\
\left|\mathcal{R}\left(s_{n}, a_{n}\right)-\mathcal{R}\left(t_{n}, a_{n}\right)\right|+ \\
\gamma d_{n-1}\left(\mathscr{N}\left(s_{n}, a_{n}\right), \mathscr{N}\left(t_{n}, a_{n}\right)\right)
\end{array}\right]
\end{aligned}
$$

Theorem: If d_{n} is updated as above and $d_{0} \equiv 0$, then $\lim _{n \rightarrow \infty} d_{n}=d_{\sim_{\pi}}$ almost surely.

Caveat: Only holds for deterministic MDPs.

3. They require full state enumerability

3. They require full state enumerability

Solution: Use neural nets!

3. They require full state enumerability Solution: Use neural nets!

3. They require full state enumerability Solution: Use neural nets!

$\left.\mathbf{T}_{\theta_{i}^{-}}^{\pi}(s, t)=|\mathcal{R}(s, \pi(s))-\mathcal{R}(t, \pi(t))|+\gamma \psi_{\theta_{i}^{-}}^{\pi_{-}}[\phi(\mathscr{N}(s, \pi(s))), \phi(\mathcal{N}(t, \pi(t)))]\right)$

$$
\mathcal{L}_{s, t, a}^{(\pi)}=\mathbb{E}_{\mathcal{D}}\left(\mathbf{T}_{\theta_{i}^{-}}^{(\pi)}(s, t, a)-\psi_{\theta_{i}}^{(\pi)}([\phi(s), \phi(t)])\right)^{2}
$$

Does it work?

π-bisimulation metrics are great

π-bisimulation metrics are great but...

π-bisimulation metrics are great but...

1. They require a pre-trained agent
2. They assume determinism

LEARNING Invariant Representations for ReinFORCEMENT LEARNING WITHOUT RECONSTRUCTION
 Amy Zhang*12 Rowan McAllister $^{* 3} \quad$ Roberto Calandra ${ }^{2} \quad$ Yarin Gal $^{4} \quad$ Sergey Levine 3
 ${ }^{1}$ McGill University
 ${ }^{2}$ Facebook AI Research
 ${ }^{3}$ University of California, Berkeley
 ${ }^{4}$ OATML group, University of Oxford

Deep Bisimulation for Control (DBC)

$$
J(\phi)=\left(\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|_{1}-\left|r_{i}-r_{j}\right|-\gamma W_{2}\left(\hat{\mathcal{P}}\left(\cdot \mid \overline{\mathbf{z}}_{i}, \mathbf{a}_{i}\right), \hat{\mathcal{P}}\left(\cdot \mid \overline{\mathbf{z}}_{j}, \mathbf{a}_{j}\right)\right)\right)^{2}
$$

$$
W_{2}\left(\mathcal{N}\left(\mu_{i}, \Sigma_{i}\right), \mathcal{N}\left(\mu_{j}, \Sigma_{j}\right)\right)^{2}=\left\|\mu_{i}-\mu_{j}\right\|_{2}^{2}+\left\|\Sigma_{i}^{1 / 2}-\Sigma_{j}^{1 / 2}\right\|_{\mathcal{F}}^{2}
$$

Deep Bisimulation for Control (DBC)

Figure 6: Bisim. results. Blue is DBC and orange is Castro (2020).

MICo: Improved representations via sampling-based state similarity for Markov decision processes

Pablo Samuel Castro*
Google Research, Brain Team

Tyler Kastner*
McGill University

Prakash Panangaden
McGill University

Mark Rowland
DeepMind

What is a good distance?

From https://psc-g.github.io/posts/research/rl/mico/

Experimental results

Experimental results

Agarwal, Schwarzer, Castro, Courville, \& Bellemare, NeurIPS, 2021

Thanks! Some other recent work:

Metrics and continuity in reinforcement learning
LeLan, Bellemare, \& Castro; AAAI 2021

$$
\begin{equation*}
d^{*}(x, y)=\underbrace{\operatorname{DiSt}\left(\pi^{*}(x), \pi^{*}(y)\right)}_{(\mathrm{A})}+\underbrace{\gamma \mathcal{W}_{1}\left(d^{*}\right)\left(P^{\pi^{*}}(\cdot \mid x), P^{\pi^{*}}(\cdot \mid y)\right)}_{(\mathrm{B})} . \tag{3}
\end{equation*}
$$

Contrastive Behavioural Similarity Embeddings for
Generalization in Reinforcement Learning
Agarwal, Machado, Castro, \& Bellemare;

