State-similarity metrics

Pablo Samuel Castro - Google Research, Brain Team

Most problems of practical interest are MDPs with very large (or continuous) state spaces.

Unstructured states

 \mathcal{X}

How to structure these states?

 $\{\mathcal{S},\mathcal{A},\mathcal{P},\mathcal{R},\gamma\}$

X

 $\{\mathcal{S},\mathcal{A},\mathcal{P},\mathcal{R},\gamma\}$

 $\{\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$

Equal rewards Equal transitions

 $\{S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$

8 states => 4 states! $V^* \equiv \hat{V}^*$

Equivalence notions and model minimization in Markov decision processes

Robert Givan^{a,*}, Thomas Dean^b, Matthew Greig^a

^a School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA ^b Department of Computer Science, Brown University, Providence, RI 02912, USA

Received 22 June 2001; received in revised form 17 April 2002

Given an MDP $\{S, A, P, \mathcal{R}, \gamma\}$, an equivalence relation $E: S \times S \rightarrow \{0, 1\}$ is a **bisimulation relation** if whenever xEy we have:

1. Same rewards

2. Same transitions

Given an MDP $\{S, A, P, \mathcal{R}, \gamma\}$, an equivalence relation xEy we have: 1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a) = \mathcal{R}$

2. Same transitions

 $E: \mathcal{S} \times \mathcal{S} \rightarrow \{0, 1\}$ is a **bisimulation relation** if whenever

Given an MDP $\{S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\}$, an equivalence relation $E: S \times S \rightarrow \{0, 1\}$ is a **bisimulation relation** if whenever xEy we have: 1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a) = \mathcal{R}(y, a)$ 2. $\forall a \in \mathcal{A}, \forall c \in S/_E, \quad \mathcal{P}(x, a)(c) = \mathcal{P}(y, a)(c)$

Given an MDP $\{S, A, P, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \to \{0, 1\}$ is a bisimulation relation if whenever xEy we have: 1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a) = \mathcal{R}$ 2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S}/_E,$

$$\mathcal{P}(y,a)$$

 $\mathcal{P}(x,a)(c) = \mathcal{P}(y,a)(c)$
 $\left(\mathcal{P}(x,a)(c) = \sum_{s' \in c} \mathcal{P}(x,a)(x')\right)$

Given an MDP $\{S, A, P, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow \{0, 1\}$ is a **bisimulation relation** if whenever xEy we have: 1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a) = \mathcal{R}$ 2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S}/_E,$

Two states x and y are **bisimilar** if there exists a bisimulation relation E such that xEy.

$$\mathcal{P}(y,a)$$

 $\mathcal{P}(x,a)(c) = \mathcal{P}(y,a)(c)$
 $\left(\mathcal{P}(x,a)(c) = \sum_{s' \in c} \mathcal{P}(x,a)(x')\right)$

Given an MDP $\{S, A, P, \mathcal{R}, \gamma\}$, an equivalence relation $E: \mathcal{S} \times \mathcal{S} \rightarrow \{0, 1\}$ is a **bisimulation relation** if whenever xEy we have: 1. $\forall a \in \mathcal{A}, \quad \mathcal{R}(x, a) = \mathcal{R}$ 2. $\forall a \in \mathcal{A}, \forall c \in \mathcal{S}/_E,$

Two states x and y are **bisimilar** if there exists a bisimulation relation E such that xEy. Let ~ be the maximal bisimulation relation.

$$\mathcal{P}(y,a)$$

 $\mathcal{P}(x,a)(c) = \mathcal{P}(y,a)(c)$
 $\left(\mathcal{P}(x,a)(c) = \sum_{s' \in c} \mathcal{P}(x,a)(x')\right)$

Bisimulation implies value equivalence

$x \sim y \implies V^*(x) = V^*(y)$

If p = q, then yes!

If $p \neq q$, then no!

p

Q

 x_0

Bisimulation relations can be brittle!

1. Reflexivity

2. Symmetry

3. Transitivity

1. Reflexivity

$x \sim x$

2. Symmetry

3. Transitivity

1. Reflexivity

$x \sim x$

2. Symmetry

$x \sim y \iff y \sim x$

3. Transitivity

1. Reflexivity

$x \sim x$

2. Symmetry

$x \sim y \iff y \sim x$

3. Transitivity

 $x \sim y \text{ and } y \sim z \implies x \sim z$

1. Reflexivity

$x \sim x$

2. Symmetry

$x \sim y \iff y \sim x$

3. Transitivity

 $x \sim y \text{ and } y \sim z \implies x \sim z$

Identity of indescernibles

Symmetry

Triangle inequality

Equivalence relations

1. Reflexivity

$x \sim x$

2. Symmetry

$x \sim y \iff y \sim x$

3. Transitivity

 $x \sim y \text{ and } y \sim z \implies x \sim z$

Metrics

Identity of indescernibles

$d(x,y) = 0 \iff x = y$

Symmetry

Triangle inequality

Equivalence relations

1. Reflexivity

$x \sim x$

2. Symmetry

$x \sim y \iff y \sim x$

3. Transitivity

 $x \sim y \text{ and } y \sim z \implies x \sim z$

Metrics

Identity of indescernibles

$d(x,y) = 0 \iff x = y$

Symmetry

d(x, y) = d(y, x)

Triangle inequality

Equivalence relations

1. Reflexivity

$x \sim x$

2. Symmetry

$x \sim y \iff y \sim x$

3. Transitivity

 $x \sim y \text{ and } y \sim z \implies x \sim z \quad d(x,z) \leq d(x,y) + d(y,z)$

Metrics

Identity of indescernibles

$d(x,y) = 0 \iff x = y$

Symmetry

d(x, y) = d(y, x)

Triangle inequality

Metrics

1. Identity of indescernibles

$$d(x,y) = 0 \iff x = y$$

2. Symmetry

d(x, y) = d(y, x)

3. Triangle inequality

 $d(x,z) \le d(x,y) + d(y,z)$

Metrics

Identity of indescernibles

$$d(x,y) = 0 \iff x = y$$

2. Symmetry

d(x, y) = d(y, x)

3. Triangle inequality

 $d(x, z) \le d(x, y) + d(y, z)$

Pseudo-metrics

d(x, x) = 0 $d(x, y) \ge 0$

The Kantorovich metric (also known as Wasserstein metric)

The Kantorovich metric (also known as Wasserstein metric) (also known as Optimal Transport)

The Kantorovich metric (also known as Wasserstein metric) (also known as Optimal Transport) (also known as Earth Movers Distance)

Q

Q

Q

 $\max_{\mu} \sum_{x \in \mathcal{S}} (\mathcal{P}(x) - \mathcal{Q}(x)) \mu_x$

subject to

 $\mu_x - \mu_y \le d(x, y) \quad \forall x, y \in \mathcal{S}$ $\mu_x \ge 0 \quad \forall x \in \mathcal{S}$

The Kantorovich metric Primal

$$\max_{\mu} \sum_{x \in \mathcal{S}} (\mathcal{P}(x) - \mathcal{Q}(x))$$

subject to

 $\mu_x - \mu_y \le d(x, y) \quad \forall x, y \in \mathcal{S}$ $\mu_x \ge 0 \quad \forall x \in \mathcal{S}$

 μ_x

The Kantorovich metric Primal Dual $\min_{\lambda} \sum \sum \lambda_{x,y} d(x,y)$ u_x $x \in \mathcal{S} \ y \in \mathcal{S}$ subject to subject to $\sum \lambda_{x,y} = \mathcal{P}(x) \quad \forall x \in \mathcal{S}$ $y{\in}\mathcal{S}$ $\mu_x \ge 0 \quad \forall x \in \mathcal{S}$ $\sum \lambda_{x,y} = \mathcal{Q}(y) \quad \forall y \in \mathcal{S}$ $x \in \mathcal{S}$ $\lambda_{x,y} \ge 0 \quad \forall x,y \in \mathcal{S}$

$$\max_{\mu} \sum_{x \in \mathcal{S}} (\mathcal{P}(x) - \mathcal{Q}(x))$$

 $\mu_x - \mu_y \le d(x, y) \quad \forall x, y \in \mathcal{S}$

The Kantorovich metric Primal Dual $\sum \lambda_{x,y} d(x,y)$ subject to $T_K(d)(\mathcal{P}, \mathcal{Q})$ $\forall x \in \mathcal{S}$ P(x) μ_x $\forall y \in \mathcal{S}$ $\mathcal{Q}(y)$ $T \subset O$ $\lambda_{x,y} \ge 0 \quad \forall x,y \in \mathcal{S}$

 $\mu_x - \mu_y \le d(x, y)$

Metrics for Finite Markov Decision Processes

Norm Ferns

School of Computer Science McGill University Montréal, Canada, H3A 2A7 nferns@cs.mcgill.ca

Prakash Panangaden McGill University

School of Computer Science Montréal, Canada, H3A 2A7 prakash@cs.mcgill.ca

Doina Precup

School of Computer Science McGill University Montréal, Canada, H3A 2A7 dprecup@cs.mcgill.ca

Definition: A metric d is a bisimulation metric if $d(x,y)=0\iff x\sim y\qquad \forall x,y\in \mathcal{S}$

Definition: A metric d is a bisimulation metric if $d(x,y) = 0 \iff x \sim y \qquad \forall x, y \in \mathcal{S}$

1. Compute bisimulation equivalence relation ~ 2. Assign distances as: d(x, y) = 0 if $x \sim y$, $d(x, y) = \infty$ otherwise. 3. Profit!

Definition: A metric d is a bisimulation metric if $d(x,y) = 0 \iff x \sim y \qquad \forall x,y \in \mathcal{S}$

1. Compute bisimulation equivalence relation ~ 2. Assign distances as: d(x,y) = 0 if $x \sim y$, $d(x,y) = \infty$ otherwise. D 3. Profit!

Definition: A metric d is a bisimulation metric if $d(x, y) = 0 \iff x \sim y \qquad \forall x, y \in \mathcal{S}$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) - \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Definition: A metric d is a bisimulation metric if $d(x,y) = 0 \iff x \sim y \qquad \forall x, y \in \mathcal{S}$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Difference in rewards

 $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) - \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$

Definition: A metric d is a bisimulation metric if $d(x, y) = 0 \iff x \sim y \qquad \forall x, y \in \mathcal{S}$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) - \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Difference in transitions

Definition: A metric d is a bisimulation metric if $d(x, y) = 0 \iff x \sim y \qquad \forall x, y \in \mathcal{S}$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) - \mathcal{R}(y,a)| + \gamma T_K(d) (\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric Over all actions

Definition: A metric d is a bisimulation metric if $d(x,y) = 0 \iff x \land$

Theorem: The functional $\mathcal{F}: \mathcal{M} \mapsto \mathcal{M}$ defined as $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) - \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$ has a unique fixed point d_{\sim} and d_{\sim} is a bisimulation metric

Theorem: $|V^*(x) - V^*(y)| \le d_{\sim}(x, y) \quad \forall x, y \in S$

$$\sim y \qquad \forall x, y \in \mathcal{S}$$

A brief overview of some (tabular) extensions

Lax bisimulation metrics

Bounding Performance Loss in Approximate MDP Homomorphisms

Jonathan J. Taylor

Dept. of Computer Science University of Toronto Toronto, Canada, M5S 3G4 jonathan.taylor@utoronto.ca Doina Precup School of Computer Science McGill University Montreal, Canada, H3A 2A7 dprecup@cs.mcgill.ca

Prakash Panangaden

School of Computer Science McGill University Montreal, Canada, H3A 2A7 prakash@cs.mcgill.ca

Lax bisimulation metrics

Definition 5. Given a finite 1-bounded metric space (\mathcal{M}, d) , let $\mathcal{P}(\mathcal{M})$ be the set of compact spaces (e.g. closed and bounded in \mathbb{R}). The *Hausdorff metric* $H(d) : \mathcal{P}(\mathcal{M}) \times \mathcal{P}(\mathcal{M}) \to [0, 1]$ is defined as: $H(d)(X, Y) = \max(\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y))$

Definition 6. Denote $X_s = \{(s,a) | a \in A\}$. Let \mathcal{M} be the set of all semimetrics on S. We define the operator $F : \mathcal{M} \to \mathcal{M}$ as $F(d)(s,u) = H(\delta(d))(X_s, X_u)$

Theorem 8. Let e_{fix} be the metric defined in (Ferns et al., 2004). Then we have: $c_r |V^*(s) - V^*(u)| \le d_{fix}(s, u) \le e_{fix}(s, u)$

Bisimulation metrics for options

On planning, prediction and knowledge transfer in Fully and **Partially Observable Markov Decision Processes**

by

Pablo Samuel Castro

Bisimulation metrics for options

relation if whenever sEt:

1.
$$\forall o, R(s, o) = R(t, o)$$

2. $\forall o, \forall C \in S/E. \sum_{s' \in C} Pr(s'|s,$

Theorem 4.17. The functional $F : \mathcal{M} \to \mathcal{M}$ defined as

$$F(d)(s,t) = \max_{o \in OPT} (|\Re(s,o) - \Re(t,o)| + \gamma T_K(d)(Pr(\cdot|s,o), Pr(\cdot|t,o)))$$

has a greatest fixed-point, d_{\sim} , and d_{\sim} is an option-bisimulation metric.

Definition 4.16. A relation $E \subseteq S \times S$ is said to be an option-bisimulation

$$o) = \sum_{s' \in C} Pr(s'|t, o)$$

Theorem 4.18. If $s \sim_O t$, then $W^*(s) = W^*(t)$.

Bisimulation metrics for policy transfer

Using Bisimulation for Policy Transfer in MDPs

Pablo Samuel Castro and Doina Precup School of Computer Science, McGill University, Montreal, QC, Canada pcastr@cs.mcgill.ca and dprecup@cs.mcgill.ca

Bisimulation metrics for policy transfer $M_1 = \{\mathcal{S}_1, \mathcal{A}, \mathcal{P}_1, \mathcal{R}_1, \gamma\} \longrightarrow M_2 = \{\mathcal{S}_2, \mathcal{A}, \mathcal{P}_2, \mathcal{R}_2, \gamma\}$

Bisimulation metrics for policy transfer $M_1 = \{S_1, \mathcal{A}, \mathcal{P}_1, \mathcal{R}_1, \gamma\} \longrightarrow M_2 = \{S_2, \mathcal{A}, \mathcal{P}_2, \mathcal{R}_2, \gamma\}$ $\pi_d(y) = \pi^* \left(\arg\min_{x \in S_1} d_{\sim}(x, y) \right)$

Bisimulation metrics for policy transfer $M_1 = \{\mathcal{S}_1, \mathcal{A}, \mathcal{P}_1, \mathcal{R}_1, \gamma\} \longrightarrow M_2 = \{\mathcal{S}_2, \mathcal{A}, \mathcal{P}_2, \mathcal{R}_2, \gamma\}$ $\pi_d(y) = \pi^* \left(\arg\min_{x \in \mathcal{S}_1} d_{\sim}(x, y) \right)$

Theorem: $|Q_2^*(y, \pi_d(y)) - V_2^*(y)| \le 2 \min_{x \in S_1} d_{\sim}(x, y)$

Bisimulation metrics for policy transfer $M_1 = \{\mathcal{S}_1, \mathcal{A}, \mathcal{P}_1, \mathcal{R}_1, \gamma\} \longrightarrow M_2 = \{\mathcal{S}_2, \mathcal{A}, \mathcal{P}_2, \mathcal{R}_2, \gamma\}$ $\pi_d(y) = \pi^* \left(\arg\min_{x \in \mathcal{S}_1} d_{\sim}(x, y) \right)$

Theorem: $|Q_2^*(y, \pi_d(y)) - V_2^*(y)| \le 2 \min_{x \in S_1} d_{\sim}(x, y)$

Bisimulation metrics are great

Bisimulation metrics are great but...

Bisimulation metrics are great but.

1. They're inherently pessimistic and only for π^* $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) - \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$

Bisimulation metrics are great but...

- 1. They're inherently pessimistic and only for π^*
 - $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$
- 2. They're expensive to compute $\tilde{O}\left(\frac{|\mathcal{S}|^{5}|\mathcal{A}|\log(\epsilon)}{\log(\gamma)}\right)$

Bisimulation metrics are great but...

- 1. They're inherently pessimistic and only for π^*
 - $\mathcal{F}(d)(x,y) = \max_{a \in \mathcal{A}} \{ |\mathcal{R}(x,a) \mathcal{R}(y,a)| + \gamma T_K(d)(\mathcal{P}(x,a), \mathcal{P}(y,a)) \}$
- 2. They're expensive to compute $\tilde{O}\left(\frac{|\mathcal{S}|^{5}|\mathcal{A}|\log(\epsilon)}{\log(\gamma)}\right)$
- 3. They require a full model and full state enumerability $T_K(\mathcal{P}(x,a),\mathcal{P}(y,a))$

Scalable Methods for Computing State Similarity in Deterministic Markov Decision Processes

Pablo Samuel Castro Google Brain psc@google.com

1. They're inherently pessimistic

1. They're inherently pessimistic Solution: π-bisimulation!

1. They're inherently pessimistic Solution: m-bisimulation!

xEt we have:

1.
$$\mathcal{R}^{\pi}_{x} = \mathcal{R}^{\pi}_{y}$$

2. $\forall c \in \mathcal{S}/_E, \quad \mathcal{P}^{\pi}_x(c) = \mathcal{P}^{\pi}_u(c)$

Two states x and y are π -bisimilar if there exists a bisimulation relation E such that xEy. Let $\sim \pi$ be the maximal bisimulation relation.

Given an MDP $\{S, A, P, R, \gamma\}$ and policy π , an equiv. relation $E: S \times S \rightarrow \{0, 1\}$ is a π -bisimulation relation if whenever

1. They're inherently pessimistic Solution: π-bisimulation!

- Definition: A metric d is a π -bisimulation metric if $d(x,y)=0\iff x\sim_{\pi}y \qquad orall x,y\in \mathcal{S}$
- **Theorem:** The functional $\mathcal{F}^{\pi} : \mathcal{M} \mapsto \mathcal{M}$ defined as
- has a unique fixed point d_{\sim_π} and d_{\sim_π} is a π -bisimulation metric
- Theorem: $|V^{\pi}(x) V^{\pi}(y)| \leq$

 $\mathcal{F}^{\pi}(d)(x,y) = |\mathcal{R}^{\pi}_{x} - \mathcal{R}^{\pi}_{y}| + \gamma T_{K}(d)(\mathcal{P}^{\pi}_{x}, \mathcal{P}^{\pi}_{y})$

$$d_{\sim_{\pi}}(x,y) \quad \forall x,y \in \mathcal{S}$$

2. They're expensive to compute

2. They're expensive to compute Solution: Sampling!

2. They're expensive to compute Solution: Sampling!

$$d_{n}(s,t) = d_{n-1}(s,t),$$
$$d_{n}(s_{n},t_{n}) = \max \begin{bmatrix} & | \\ & \gamma & | \\ & \gamma & | \end{bmatrix}$$

Theorem: If d_n is updated as above and $d_0 \equiv 0$, then $\lim d_n = d_{\sim_{\pi}} \text{ almost surely.}$ $n \rightarrow \infty$

 $\forall s \neq s_n, t \neq t_n$ $\begin{bmatrix} d_{n-1}(s_n, t_n), \\ |\mathcal{R}(s_n, a_n) - \mathcal{R}(t_n, a_n)| + \\ d_{n-1}(\mathcal{N}(s_n, a_n), \mathcal{N}(t_n, a_n)) \end{bmatrix}$

2. They're expensive to compute Solution: Sampling!

$$d_{n}(s,t) = d_{n-1}(s,t),$$
$$d_{n}(s_{n},t_{n}) = \max \begin{bmatrix} & | \\ & \gamma & | \\ & \gamma & | \end{bmatrix}$$

Theorem: If d_n is updated as above and $d_0 \equiv 0$, then $\lim d_n = d_{\sim_{\pi}} \text{ almost surely.}$ $n \rightarrow \infty$

Caveat: Only holds for deterministic MDPs.

 $\forall s \neq s_n, t \neq t_n$ $\begin{bmatrix} d_{n-1}(s_n, t_n), \\ |\mathcal{R}(s_n, a_n) - \mathcal{R}(t_n, a_n)| + \\ d_{n-1}(\mathcal{N}(s_n, a_n), \mathcal{N}(t_n, a_n)) \end{bmatrix}$

3. They require full state enumerability

3. They require full state enumerability Solution: Use neural nets!

3. They require full state enumerability Solution: Use neural nets!

3. They require full state enumerability Solution: Use neural nets!

$$\Gamma^{\pi}_{\theta_i^-}(s,t) = |\mathcal{R}(s,\pi(s)) - \mathcal{R}(s,\pi(s))| - \mathcal{R}(s,\pi(s)) - \mathcal{R}(s,\pi(s))| - \mathcal{R}(s,\pi(s)) - \mathcal{R}(s,\pi(s))| - \mathcal{R}(s,\pi($$

$$\mathcal{L}_{s,t,a}^{(\pi)} = \mathbb{E}_{\mathcal{D}} \left(\mathbf{T}_{\theta_i}^{(\pi)}(s,t,a) - \psi_{\theta_i}^{(\pi)}([\phi(s),\phi(t)]) \right)^2$$

 $\mathcal{L}(t,\pi(t))|+ \gamma \psi_{\theta_i}^{\pi}([\phi(\mathcal{N}(s,\pi(s))),\phi(\mathcal{N}(t,\pi(t)))])$

X X X X X <u>a a a a a a</u> \times \times \times \times \times \times ድ ድ ድ ድ ድ ድ * * * * * * カカカカカカ

Does it work?

π -bisimulation metrics are great

π-bisimulation metrics are great but...

π-bisimulation metrics are great but...

1. They require a pre-trained agent

2. They assume determinism

LEARNING INVARIANT REPRESENTATIONS FOR REIN-FORCEMENT LEARNING WITHOUT RECONSTRUCTION

Amy Zhang*12Rowan McAllister*31McGill University2Facebook AI Research3University of California, Berkeley4OATML group, University of Oxford

Roberto Calandra² **Yarin Gal**⁴ **Sergey Levine**³

Deep Bisimulation for Control (DBC)

$$J(\phi) = \left(||\mathbf{z}_i - \mathbf{z}_j||_1 - |r_i - r_j||_1 \right)$$

$W_2(\mathcal{N}(\mu_i, \Sigma_i), \mathcal{N}(\mu_j, \Sigma_j))^2 = ||\mu_i - \mu_j||_2^2 + ||\Sigma_i^{1/2} - \Sigma_j^{1/2}||_{\mathcal{F}}^2$

 $r_j | - \gamma W_2 (\hat{\mathcal{P}}(\cdot | \bar{\mathbf{z}}_i, \mathbf{a}_i), \hat{\mathcal{P}}(\cdot | \bar{\mathbf{z}}_j, \mathbf{a}_j)))^2,$

Deep Bisimulation for Control

Figure 6: Bisim. results. Blue is DBC and orange is Castro (2020).

DBC (ours)

MICo: Improved representations via sampling-based state similarity for Markov decision processes

Pablo Samuel Castro* Google Research, Brain Team **Tyler Kastner*** McGill University

Prakash Panangaden McGill University Mark Rowland DeepMind

What is a good distance?

From https://psc-g.github.io/posts/research/rl/mico/

2

Experimental results

Experimental results

Agarwal, Schwarzer, Castro, Courville, & Bellemare, NeurIPS, 2021

Thanks! Some other recent work:

$$d^*(x,y) = \underbrace{\operatorname{DIST}\left(\pi^*(x), \pi^*(y)\right)}_{(A)} + \underbrace{\gamma \mathcal{W}_1(d^*)\left(P^{\pi^*}(\cdot \mid x), P^{\pi^*}(\cdot \mid y)\right)}_{(B)}.$$

Contrastive Behavioural Similarity Embeddings for Generalization in Reinforcement Learning Agarwal, Machado, Castro, & Bellemare; ICLR 2021

Metrics and continuity in reinforcement learning LeLan, Bellemare, & Castro; AAAI 2021

(3)